Acta Metallurgica Sinica (English Letters) ›› 2025, Vol. 38 ›› Issue (6): 969-980.DOI: 10.1007/s40195-025-01846-w
Previous Articles Next Articles
Amir Behjat1,2,3, Saber Sanaei3, Mohammad Hossein Mosallanejad1,2,3, Masoud Atapour3, Abdollah Saboori1,2()
Received:
2024-11-02
Revised:
2024-12-29
Accepted:
2025-01-09
Online:
2025-06-10
Published:
2025-04-16
Contact:
Abdollah Saboori, Amir Behjat, Saber Sanaei, Mohammad Hossein Mosallanejad, Masoud Atapour, Abdollah Saboori. Electrochemical Behavior of Electron Beam Powder Bed Fused Ti536 Alloy under Simulated Inflammatory Conditions[J]. Acta Metallurgica Sinica (English Letters), 2025, 38(6): 969-980.
Add to citation manager EndNote|Ris|BibTeX
Simulated conditions | Samples | Ecorr (V vs. Ag/AgCl) | Icorr (μA·cm-2) | Ipass (μA·cm−2) |
---|---|---|---|---|
0.9% NaCl | Ti6Al4V | − 0.025 ± 0.138 | 0.042 ± 0.004 | 0.39 ± 0.03 |
Ti5Al3V6Cu | − 0.035 ± 0.015 | 0.026 ± 0.002 | 6.17 ± 0.06 | |
0.9% NaCl + H2O2 | Ti6Al4V | 0.165 ± 0.013 | 0.031 ± 0.003 | - |
Ti5Al3V6Cu | 0.203 ± 0.174 | 0.044 ± 0.004 | - |
Table 1 Electrochemical parameters of the samples in different simulated conditions
Simulated conditions | Samples | Ecorr (V vs. Ag/AgCl) | Icorr (μA·cm-2) | Ipass (μA·cm−2) |
---|---|---|---|---|
0.9% NaCl | Ti6Al4V | − 0.025 ± 0.138 | 0.042 ± 0.004 | 0.39 ± 0.03 |
Ti5Al3V6Cu | − 0.035 ± 0.015 | 0.026 ± 0.002 | 6.17 ± 0.06 | |
0.9% NaCl + H2O2 | Ti6Al4V | 0.165 ± 0.013 | 0.031 ± 0.003 | - |
Ti5Al3V6Cu | 0.203 ± 0.174 | 0.044 ± 0.004 | - |
Simulated conditions | Immersion time (h) | Samples | Rs (Ω cm2) | Rp (kΩ cm2) | Qpl (10−5 Ω-1 cm−2 Sn) | n | Ceff (10−5 F cm−2) | deff (nm) |
---|---|---|---|---|---|---|---|---|
0.9% NaCl | 2 | Ti6Al4V | 73.73 ± 0.13 | 44.53 ± 0.23 | 6.42 ± 0.23 | 0.87 | 2.93 ± 0.13 | 1.36 ± 0.17 |
Ti5Al3V6Cu | 73.62 ± 0.12 | 19.94 ± 0.16 | 6.41 ± 0.08 | 0.86 | 2.48 ± 0.12 | 1.61 ± 0.14 | ||
24 | Ti6Al4V | 57.27 ± 0.12 | 53.18 ± 0.13 | 6.82 ± 0.15 | 0.88 | 2.834 ± 0.23 | 1.41 ± 0.16 | |
Ti5Al3V6Cu | 59.61 ± 0.15 | 25.6 ± 0.12 | 7.08 ± 0.14 | 0.87 | 2.12 ± 0.16 | 1.88 ± 0.12 | ||
0.9% NaCl + H2O2 | 2 | Ti6Al4V | 97.31 ± 0.22 | 5.88 ± 0.14 | 3.21 ± 0.15 | 0.89 | 1.65 ± 0.07 | 2.04 ± 0.11 |
Ti5Al3V6Cu | 83.99 ± 0.81 | 2.03 ± 0.31 | 1.96 ± 0.08 | 0.89 | 1.52 ± 0.05 | 2.13 ± 0.13 | ||
24 | Ti6Al4V | 68.09 ± 0.23 | 17.76 ± 0.53 | 1.76 ± 0.29 | 0.90 | 1.93 ± 0.13 | 2.64 ± 0.21 | |
Ti5Al3V6Cu | 51.30 ± 0.15 | 12.3 ± 0.14 | 1.93 ± 0.14 | 0.87 | 1.87 ± 0.13 | 2.46 ± 0.14 |
Table 2 Parameters determined from fitting the EIS plots of the samples in different simulated conditions
Simulated conditions | Immersion time (h) | Samples | Rs (Ω cm2) | Rp (kΩ cm2) | Qpl (10−5 Ω-1 cm−2 Sn) | n | Ceff (10−5 F cm−2) | deff (nm) |
---|---|---|---|---|---|---|---|---|
0.9% NaCl | 2 | Ti6Al4V | 73.73 ± 0.13 | 44.53 ± 0.23 | 6.42 ± 0.23 | 0.87 | 2.93 ± 0.13 | 1.36 ± 0.17 |
Ti5Al3V6Cu | 73.62 ± 0.12 | 19.94 ± 0.16 | 6.41 ± 0.08 | 0.86 | 2.48 ± 0.12 | 1.61 ± 0.14 | ||
24 | Ti6Al4V | 57.27 ± 0.12 | 53.18 ± 0.13 | 6.82 ± 0.15 | 0.88 | 2.834 ± 0.23 | 1.41 ± 0.16 | |
Ti5Al3V6Cu | 59.61 ± 0.15 | 25.6 ± 0.12 | 7.08 ± 0.14 | 0.87 | 2.12 ± 0.16 | 1.88 ± 0.12 | ||
0.9% NaCl + H2O2 | 2 | Ti6Al4V | 97.31 ± 0.22 | 5.88 ± 0.14 | 3.21 ± 0.15 | 0.89 | 1.65 ± 0.07 | 2.04 ± 0.11 |
Ti5Al3V6Cu | 83.99 ± 0.81 | 2.03 ± 0.31 | 1.96 ± 0.08 | 0.89 | 1.52 ± 0.05 | 2.13 ± 0.13 | ||
24 | Ti6Al4V | 68.09 ± 0.23 | 17.76 ± 0.53 | 1.76 ± 0.29 | 0.90 | 1.93 ± 0.13 | 2.64 ± 0.21 | |
Ti5Al3V6Cu | 51.30 ± 0.15 | 12.3 ± 0.14 | 1.93 ± 0.14 | 0.87 | 1.87 ± 0.13 | 2.46 ± 0.14 |
Fig. 7 Schematic representation of the corrosion mechanism on Ti6Al4V and Ti5Al3V6Cu alloy surfaces present in the normal and inflammatory tested environments.
[1] | D.E. Reichman, J.A. Greenberg, Rev. Obstet. Gynecol. 2, 212 (2009) |
[2] | M.H. Mosallanejad, A. Abdi, F. Karpasand, N. Nassiri, L. Iuliano, A. Saboori, Adv. Eng. Mater. 25, 2301122 (2023) |
[3] |
J. Grischke, J. Eberhard, M. Stiesch, Dent. Mater. J. 35, 545 (2016)
DOI PMID |
[4] | M. Kaur, K. Singh, Mater. Sci. Eng. C 102, 844 (2019) |
[5] | M. Taghian, M.H. Mosallanejad, E. Lannunziata, G. Del Greco, L. Iuliano, A. Saboori, J. Mater. Res. Technol. 27, 6484 (2023) |
[6] |
R. Ghanavati, H. Naffakh-Moosavy, J. Mater. Res. Technol. 13, 1628 (2021)
DOI |
[7] | V. Dehnavi, J.D. Henderson, C. Dharmendra, B.S. Amirkhiz, D.W. Shoesmith, J.J. Noël, M. Mohammadi, J. Electrochem. Soc. 167, 131505 (2020) |
[8] | I. Aiza, C. Baldi, F.M. de la Vega, S. Sebastiani, N.E. Veronese, M. Yousefi, M.H. Mosallanejad, E. Maleki, M. Guagliano, L. Iuliano, A. Saboori, S. Bagherifard, Prog. Mater. Sci. 147, 101357 (2025) |
[9] | T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang, Prog. Mater. Sci. 92, 112 (2018) |
[10] | D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann, Acta Mater. (2016). |
[11] | M.H. Mosallanejad, R. Ghanavati, A. Behjat, M. Taghian, A. Saboori, L. Iuliano, Metals (Basel). 14, 425 (2024) |
[12] |
E. Davoodi, H. Montazerian, A.S. Mirhakimi, M. Zhianmanesh, O. Ibhadode, S.I. Shahabad, R. Esmaeilizadeh, E. Sarikhani, S. Toorandaz, S.A. Sarabi, R. Nasiri, Y. Zhu, J. Kadkhodapour, B. Li, A. Khademhosseini, E. Toyserkani, Bioact. Mater. 15, 214 (2022)
DOI PMID |
[13] | L. Zhang, L. Chen, Adv. Eng. Mater. 21, 1801215 (2019) |
[14] | M. Gasik, Sci. Technol. Adv. Mater. 18, 550 (2017) |
[15] | T. Hanawa, Sci. Technol. Adv. Mater. 23, 457 (2022) |
[16] |
M. Prestat, D. Thierry, Acta Biomater. 136, 72 (2021)
DOI PMID |
[17] | J. Yang, Y. Song, K. Dong, E.H. Han, Corros. Rev. 41, 5 (2023) |
[18] | N. Eliaz, Materials (Basel). 12, 407 (2019) |
[19] | L. Yu, J.L. Zhu, L. Zhang, S.X. Liang, J. Cheng, L.Y. Chen, Adv. Eng. Mater. 25, (2023). |
[20] |
A. Bordbar-Khiabani, M. Gasik, Sci. Rep. 13, 2312 (2023)
DOI PMID |
[21] | A. Sotniczuk, J.L. Gilbert, Y. Liu, M. Matczuk, W. Chromiński, D. Kalita, M. Pisarek, H. Garbacz, Corros. Sci. 220, 111271 (2023) |
[22] | E. Zhang, X. Zhao, J. Hu, R. Wang, S. Fu, G. Qin, Bioact. Mater. 6, 2569 (2021) |
[23] | A. Behjat, S. Sanaei, M.H. Mosallanejad, M. Atapour, M. Sheikholeslam, A. Saboori, L. Iuliano, Biomater. Adv. 163, 213928 (2024) |
[24] | P. Mahmoudi, M.R. Akbarpour, H.B. Lakeh, F. Jing, M.R. Hadidi, B. Akhavan, Mater. Today Bio. 17, 100447 (2022) |
[25] | M.H. Mosallanejad, B. Niroumand, A. Aversa, A. Saboori, J. Alloy. Compd. 872, 159567 (2021) |
[26] | A. Behjat, M. Shamanian, L. Iuliano, A. Saboori, Prog. Addit. Manuf. 9, 2031 (2024) |
[27] | X. Xu, Y. Lu, S. Li, S. Guo, M. He, K. Luo, J. Lin, Mater. Sci. Eng. C 90, 198 (2018) |
[28] | W. Zong, S. Zhang, C. Zhang, L. Ren, Q. Wang, Mater. Corros. 71, 1697 (2020) |
[29] | M.H. Mosallanejad, B. Niroumand, C. Ghibaudo, S. Biamino, A. Salmi, P. Fino, A. Saboori, Addit. Manuf. 56, 102878 (2022) |
[30] | A. Bordbar-Khiabani, M. Gasik, J. Mater. Res. Technol. 26, 356 (2023) |
[31] | L.O. Berbel, P. Banczek, I. K. Karousis, G. A. Kotsakis, I. Costa, PLoS One 14, (2019). |
[32] | F. Yu, O. Addison, A.J. Davenport, Acta Biomater. 26, 355 (2015) |
[33] | L. Benea, I. Bounegru, A. Forray, E.R. Axente, D.L. Buruiana, Molecules 28, 4837 (2023) |
[34] | A.C. Lazanas, M.I. Prodromidis, ACS Meas Sci. Au 3, 162 (2023) |
[35] | D.S. Vieira, P.R.G. Fernandes, H. Mukai, R.S. Zola, G.G. Lenzi, E.K. Lenzi, Int. J. Electrochem. Sci. 11, 7775 (2016) |
[36] | G.J. Brug, A.L.G. van den Eeden, M. Sluyters-Rehbach, J.H. Sluyters, J. Electroanal. Chem. Interfacial Electrochem. 176, 275 (1984) |
[37] | S. Ren, C. Du, Z. Liu, X. Li, J. Xiong, S. Li, Appl. Surf. Sci. 506, 144759 (2020) |
[38] | J. Li, D. Zhang, X. Chen, D. Xu, D. Qiu, F. Wang, M. Easton, J. Mater. Sci. Technol. 166, 21 (2023) |
[39] | P. Qin, Y. Chen, Y.J. Liu, J. Zhang, L.Y. Chen, Y. Li, X. Zhang, C. Cao, H. Sun, L.C. Zhang, ACS Biomater. Sci. Eng. 5, 1141 (2019) |
[40] | S. Li, H. Liu, M.A. Siddiqui, Y. Li, H. Wang, S.Y. Zhang, L. Ren, K. Yang, ACS Biomater. Sci. Eng. 9, 2362 (2023) |
[41] | H. Zheng, X. Gai, Y. Bai, W. Hou, S. Li, Y. Hao, R.D.K. Misra, R. Yang, Acta Metall. Sin.-Engl. Lett. 37, 159 (2024) |
[42] | X. Luo, C. Yang, D. Li, L.C. Zhang, Acta Metall. Sin.-Engl. Lett. 37, 17 (2024) |
[43] | Y.W. Cui, L.Y. Chen, P. Qin, R. Li, Q. Zang, J. Peng, L. Zhang, S. Lu, L. Wang, L.C. Zhang, Corros. Sci. 203, 110333 (2022) |
[44] | Y. Zhang, O. Addison, F. Yu, B.C.R. Troconis, J.R. Scully, A.J. Davenport, Sci. Rep. 8, 3185 (2018) |
[45] | M.A. Siddiqui, L. Ren, D.D. Macdonald, K. Yang, Electrochim. Acta 386, 138466 (2021) |
[46] | X. Gai, Y. Bai, J. Li, S. Li, W. Hou, Y. Hao, X. Zhang, R. Yang, R.D.K. Misra, Corros. Sci. 145, 80 (2018) |
[47] | Y.H. Chu, L.Y. Chen, B.Y. Qin, W. Gao, F. Shang, H.Y. Yang, L. Zhang, P. Qin, L.C. Zhang, Acta Metall. Sin.-Engl. Lett. 37, 102 (2024) |
[48] | H. Liu, Z.X. Wang, J. Cheng, N. Li, S.X. Liang, L. Zhang, F. Shang, D. Oleksandr, L.Y. Chen, J. Mater. Res. Technol. 27, 7882 (2023) |
[49] | A. Sotniczuk, D. Kuczyńska-Zemła, P. Kwaśniak, M. Thomas, H. Garbacz, Electrochim. Acta 312, 369 (2019) |
[50] | M.A. Siddiqui, I. Ullah, S.K. Kolawole, C. Peng, J. Wang, L. Ren, K. Yang, D.D. Macdonald, Corros. Sci. 190, 109693 (2021) |
[1] | Lingxiao Du, Hang Ding, Yun Xie, Li Ji, Wanbin Chen, Yunze Xu. Effect of Laser Energy Density on Microstructures and Properties of Additively Manufactured AlCoCrFeNi2.1 Eutectic High-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(2): 233-244. |
[2] | Erika Lannunziata, Mohammad Hossein Mosallanejad, Manuela Galati, Gabriele Piscopo, Abdollah Saboori. Analyzing the Interplay of Sintering Conditions on Microstructure and Hardness in Indirect Additive Manufacturing of 17-4PH Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(9): 1611-1620. |
[3] | Jinpeng Hu, Tao Sun, Fujun Cao, Yifu Shen, Zhiyuan Yang, Chan Guo. Enhanced Strength-Ductility Synergy in Submerged Friction Stir Processing ER2319 Alloy Manufactured by Wire-Arc Additive Manufacturing via Creating Ultrafine Microstructure [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(5): 793-807. |
[4] | Zhipeng Zhang, Jide Liu, Xinguang Wang, Zhaokuang Chu, Yizhou Zhou, Jianjun Wang, Jinguo Li. Effect of Al on Microstructure and Mechanical Properties of ATI 718Plus by Laser Additive Manufacturing [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(11): 1891-1906. |
[5] | Qiang Li, Xing-Ran Li, Bai-Xin Dong, Xiao-Long Zhang, Shi-Li Shu, Feng Qiu, Lai-Chang Zhang, Zhi-Hui Zhang. Metallurgy and Solidification Microstructure Control of Fusion-Based Additive Manufacturing Fabricated Metallic Alloys: A Review [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 29-53. |
[6] | Hongyu Zheng, Xin Gai, Yun Bai, Wentao Hou, Shujun Li, Yulin Hao, R. D. K. Misra, Rui Yang. Influence of Component Size on the Corrosion Behavior of Ti6Al4V Alloy Fabricated by Electron Beam Powder Bed Fusion [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 159-168. |
[7] | Xiaolong Zhang, Yue Jiang, Shupeng Wang, Shuo Wang, Ziqiang Wang, Zhenglei Yu, Zhihui Zhang, Luquan Ren. Compression Behavior and Failure Mechanisms of Bionic Porous NiTi Structures Built via Selective Laser Melting [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(6): 926-936. |
[8] | Yuan Tian, Kanwal Chadha, Clodualdo Aranas Jr.. Deformation-Induced Strengthening Mechanism in a Newly Designed L-40 Tool Steel Manufactured by Laser Powder Bed Fusion [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(1): 21-34. |
[9] | Hua-Zhen Jiang, Qi-Sheng Chen, Zheng-Yang Li, Xin-Ye Chen, Hui-Lei Sun, Shao-Ke Yao, Jia-Huiyu Fang, Qi-Yun Hu. Microstructure and Size-Dependent Mechanical Properties of Additively Manufactured 316L Stainless Steels Produced by Laser Metal Deposition [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(1): 1-20. |
[10] | Jian-Yu Li, Shi-Ning Kong, Chi-Kun Liu, Bin-Bin Wang, Zhao Zhang. Chemical Composition Effect on Microstructures and Mechanical Properties in Friction Stir Additive Manufacturing [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(9): 1494-1508. |
[11] | Yinuo Guo, Haijun Su, Peixin Yang, Yong Zhao, Zhonglin Shen, Yuan Liu, Di Zhao, Hao Jiang, Jun Zhang, Lin Liu, Hengzhi Fu. A Review of Emerging Metallic System for High-Energy Beam Additive Manufacturing: Al-Co-Cr-Fe-Ni High Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(9): 1407-1423. |
[12] | Mohammad Hossein Mosallanejad, Saber Sanaei, Masoud Atapour, Behzad Niroumand, Luca Iuliano, Abdollah Saboori. Microstructure and Corrosion Properties of CP-Ti Processed by Laser Powder Bed Fusion under Similar Energy Densities [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(9): 1453-1464. |
[13] | Junrong Tang, Naeem ul Haq Tariq, Zhipo Zhao, Mingxiao Guo, Hanhui Liu, Yupeng Ren, Xinyu Cui, Yanfang Shen, Jiqiang Wang, Tianying Xiong. Microstructure and Mechanical Properties of Ti-Ta Composites Prepared Through Cold Spray Additive Manufacturing [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(9): 1465-1476. |
[14] | Jialin Yang, Xing Li, Hanbo Yao, Yingchun Guan. Interfacial Features of Stainless Steel/Titanium Alloy Multi-metal Fabricated by Laser Additive Manufacturing [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1357-1364. |
[15] | Yujian Wang, Shuo Chu, Zhijun Wang, Junjie Li, Jincheng Wang. On Ti6Al4V Microsegregation in Electron Beam Additive Manufacturing with Multiphase-Field Simulation Coupled with Thermodynamic Data [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 425-438. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||