Acta Metallurgica Sinica (English Letters) ›› 2024, Vol. 37 ›› Issue (1): 159-168.DOI: 10.1007/s40195-023-01609-5
Previous Articles Next Articles
Hongyu Zheng1,2, Xin Gai3(), Yun Bai1, Wentao Hou1, Shujun Li1(
), Yulin Hao1, R. D. K. Misra4, Rui Yang1
Received:
2023-07-04
Revised:
2023-07-24
Accepted:
2023-07-26
Online:
2024-01-10
Published:
2023-10-30
Contact:
Xin Gai, About author:
First author contact:About author:Hongyu Zheng and Xin Gai both authors contributed equally to this paper.
Hongyu Zheng, Xin Gai, Yun Bai, Wentao Hou, Shujun Li, Yulin Hao, R. D. K. Misra, Rui Yang. Influence of Component Size on the Corrosion Behavior of Ti6Al4V Alloy Fabricated by Electron Beam Powder Bed Fusion[J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 159-168.
Add to citation manager EndNote|Ris|BibTeX
Sample | Ti | Al | V | O | C | H | N | Fe |
---|---|---|---|---|---|---|---|---|
As-fabricated | Bal. | 5.97 | 4.16 | 0.15 | 0.01 | 0.001 | 0.01 | 0.21 |
Table 1 Chemical compositions of the Ti-6Al-4V samples fabricated by EB-PBF (wt%)
Sample | Ti | Al | V | O | C | H | N | Fe |
---|---|---|---|---|---|---|---|---|
As-fabricated | Bal. | 5.97 | 4.16 | 0.15 | 0.01 | 0.001 | 0.01 | 0.21 |
Fig. 1 Schematic diagram of microstructure and electrochemical corrosion test sampling of Ti-6Al-4V alloy with different sample thicknesses prepared by EB-PBF (The tinted surface is the testing surface)
Fig. 5 EBSD (0001), (10\(\overline{1 }\)0) and (11\(\overline{2 }\)0) pole figures of EB-PBF-fabricated Ti-6Al-4V samples with thickness of a 16 mm and b 1 mm
Sample | Icorr (µA cm−2) | Ecorr (V, SCE) | Corrosion rate (× 10−5 mm y−1) | Ipp (µA cm−2) | Epp (V, SCE) | Ebb (V, SCE) | ΔE (V, SCE) |
---|---|---|---|---|---|---|---|
16 mm | 0.008 ± 0.001 | − 0.62 ± 0.04 | 0.022 | 1.53 ± 0.06 | − 0.03 ± 0.03 | 2.36 ± 0.06 | 2.39 ± 0.09 |
1 mm | 0.028 ± 0.010 | − 0.42 ± 0.03 | 0.078 | 1.79 ± 0.10 | 0.08 ± 0.03 | 2.40 ± 0.02 | 2.32 ± 0.05 |
Table 2 Corrosion parameters of the potentiodynamic polarization for the EB-PBF-fabricated Ti-6Al-4V samples with thickness of 16 mm and 1 mm in PBS at 37 ℃
Sample | Icorr (µA cm−2) | Ecorr (V, SCE) | Corrosion rate (× 10−5 mm y−1) | Ipp (µA cm−2) | Epp (V, SCE) | Ebb (V, SCE) | ΔE (V, SCE) |
---|---|---|---|---|---|---|---|
16 mm | 0.008 ± 0.001 | − 0.62 ± 0.04 | 0.022 | 1.53 ± 0.06 | − 0.03 ± 0.03 | 2.36 ± 0.06 | 2.39 ± 0.09 |
1 mm | 0.028 ± 0.010 | − 0.42 ± 0.03 | 0.078 | 1.79 ± 0.10 | 0.08 ± 0.03 | 2.40 ± 0.02 | 2.32 ± 0.05 |
Fig. 7 EIS spectra diagrams of EB-PBF-fabricated Ti-6Al-4V with thickness of 16 mm and 1 mm in PBS at 37 °C: a Nyquist plot, b, c bode plots, and d equivalent circuit used for impedance analysis
Sample | Rs (Ω cm2) | Rf (kΩ cm2) | CPEf | Rct (MΩ cm2) | CPEdl | χ2 × 10−4 | ||
---|---|---|---|---|---|---|---|---|
Y0 (× 10−5 Ω−1 cm−2 sn) | n1 | Y0 (× 10−5 Ω−1 cm−2 sn) | n2 | |||||
16 mm | 17.81 ± 1.01 | 23.92 ± 1.27 | 3.72 ± 0.26 | 0.923 | 0.849 ± 0.106 | 6.77 ± 1.70 | 0.921 | 6.68 |
1 mm | 17.19 ± 1.16 | 19.31 ± 1.12 | 4.93 ± 0.28 | 0.895 | 0.606 ± 0.122 | 5.21 ± 1.81 | 0.915 | 4.94 |
Table 3 Electrochemical impedance parameters obtained by model R(QR)(QR) for the EB-PBF-fabricated Ti-6Al-4V sample with thickness of 16 mm and 1 mm in PBS at 37 ℃
Sample | Rs (Ω cm2) | Rf (kΩ cm2) | CPEf | Rct (MΩ cm2) | CPEdl | χ2 × 10−4 | ||
---|---|---|---|---|---|---|---|---|
Y0 (× 10−5 Ω−1 cm−2 sn) | n1 | Y0 (× 10−5 Ω−1 cm−2 sn) | n2 | |||||
16 mm | 17.81 ± 1.01 | 23.92 ± 1.27 | 3.72 ± 0.26 | 0.923 | 0.849 ± 0.106 | 6.77 ± 1.70 | 0.921 | 6.68 |
1 mm | 17.19 ± 1.16 | 19.31 ± 1.12 | 4.93 ± 0.28 | 0.895 | 0.606 ± 0.122 | 5.21 ± 1.81 | 0.915 | 4.94 |
[1] |
S.Y. Liu, Y.C. Shin, Mater. Des. 164, 107552 (2019)
DOI URL |
[2] |
L.C. Zhang, L.Y. Chen, S.F. Zhou, Z. Luo, J. Alloys Compd. 936, 168099 (2023)
DOI URL |
[3] |
X. Gai, R. Liu, Y. Bai, S. Li, Y. Yang, S. Wang, J. Zhang, W. Hou, Y. Hao, X. Zhang, R. Yang, R.D.K. Misra, J. Mater. Sci. Technol. 97, 272 (2022)
DOI URL |
[4] | L.Y. Chen, S.X. Liang, Y.J. Liu, L.C. Zhang, Mater. Sci. Eng. R 146, 100648 (2021) |
[5] |
C. Xu, L.Y. Chen, C.B. Zheng, H.Y. Zhang, C.H. Zhao, Z.X. Wang, S. Lu, J.W. Zhang, L.C. Zhang, Adv. Eng. Mater. 23, 2001433 (2021)
DOI URL |
[6] |
C.X. Cui, B.M. Hu, L.C. Zhao, S.J. Liu, Mater. Des. 32, 1684 (2011)
DOI URL |
[7] | J. Karlsson, A. Snis, H. Engqvist, J. Lausmaa, J. Mater. Process. Technol. 213, 2109 (2013) |
[8] |
A.A. Antonysamy, J. Meyer, P.B. Prangnell, Mater. Charact. 84, 153 (2013)
DOI URL |
[9] |
J. Bruno, A. Rochman, G. Cassar, J. Mater. Eng. Perform. 26, 692 (2017)
DOI URL |
[10] | T. Morita, C. Tsuda, T. Nakano, Mater. Sci. Eng. A 704, 246 (2017) |
[11] | N. Hrabe, T. Quinn, Mater. Sci. Eng. A 573, 264 (2013) |
[12] |
D. Mah, M.H. Pelletier, V. Lovric, W.R. Walsh, Ann. Biomed. Eng. 47, 162 (2019)
DOI |
[13] |
N.W. Dai, L.C. Zhang, J.X. Zhang, Q.M. Chen, M.L. Wu, Corros. Sci. 102, 484 (2016)
DOI URL |
[14] |
L.Y. Chen, H.Y. Zhang, C.B. Zheng, H.Y. Yang, P. Qin, C.H. Zhao, S. Lu, S.X. Liang, L.J. Chai, L.C. Zhang, Mater. Des. 208, 109907 (2021)
DOI URL |
[15] |
X.C. Yan, C.B. Shi, T.K. Liu, Y. Ye, C. Chang, W.Y. Ma, C.M. Deng, S. Yin, H.L. Liao, M. Liu, Surf. Coat. Technol. 396, 125955 (2020)
DOI URL |
[16] | H.M. Hamza, K.M. Deen, W. Haider, Mater. Sci. Eng. C 113, 110980 (2020) |
[17] |
M.K. Kolamroudi, M. Asmael, M. Ilkan, N. Kordani, Trans. Indian Inst. Met. 74, 783 (2021)
DOI |
[18] | L.E. Murr, Addit. Manuf. 5, 40 (2015) |
[19] |
X.L. Zhao, S.J. Li, M. Zhang, Y.D. Liu, T.B. Sercombe, S.G. Wang, Y.L. Hao, R. Yang, L.E. Murr, Mater. Des. 95, 21 (2016)
DOI URL |
[20] |
X.J. Gong, Y. Cui, D. Wei, B. Liu, R. Liu, Y. Nie, Y. Li, Corros. Sci. 127, 101 (2017)
DOI URL |
[21] |
X. Gai, Y. Bai, J. Li, S. Li, W. Hou, Y. Hao, X. Zhang, R. Yang, R.D.K. Misra, Corros. Sci. 145, 80 (2018)
DOI URL |
[22] |
J.Q. Li, X. Lin, P.F. Guo, M.H. Song, W.D. Huang, Corros. Sci. 142, 161 (2018)
DOI URL |
[23] | R.R. Boyer (ed.), Materials properties handbook: titanium alloys (ASM International, Ohio, 1994), |
[24] | T. Ahmed, H.J. Rack, Mater. Sci. Eng. A 243, 206 (1998) |
[25] | S.S. Al-Bermani, M.L. Blackmore, W. Zhang, I. Todd, Metall. Mater. Trans. A 41, 3422 (2010) |
[26] |
X.P. Tan, Y. Kok, Y.J. Tan, M. Descoins, D. Mangelinck, S.B. Tor, K.F. Leong, C.K. Chua, Acta Mater. 97, 1 (2015)
DOI URL |
[27] |
Y.W. Cui, L.Y. Chen, P. Qin, R.F. Li, Q.H. Zang, J.H. Peng, L.N. Zhang, S. Lu, L.Q. Wang, L.C. Zhang, Corros. Sci. 203, 110333 (2022)
DOI URL |
[28] | D.Q. Martins, W.R. Osorio, M.E.P. Souza, R. Caram, A. Garcia, Electrochim. Acta 53, 2809 (2008) |
[29] | F.X. Xie, X.B. He, S.L. Cao, M. Mei, X.H. Qu, Electrochim. Acta 105, 121 (2013) |
[30] |
L.T. Duarte, S.R. Biaggio, R.C.R. Filho, N. Bocchi, Corros. Sci. 72, 35 (2013)
DOI URL |
[31] | X. Gai, Y. Bai, S.J. Li, L. Wang, S.T. Ai, Y.L. Hao, R. Yang, K.R. Dai, J. Shanghai Jiaotong Univ. Sci. 26, 416 (2021) |
[32] | D.C. Kong, C.F. Dong, X.Q. Ni, X.G. Li, npj Mater. Degrad. 3, 24 (2019) |
[33] | P. Qin, Y. Chen, Y.J. Liu, J.X. Zhang, L.Y. Chen, Y.H. Li, X.H. Zhang, C.D. Cao, H.Q. Sun, L.C. Zhang, A.C.S. Biomater, Sci. Eng. 5, 1141 (2019) |
[34] |
L.B. Zhou, T.C. Yuan, J.Z. Tang, J.J. He, R.D. Li, Opt. Laser Technol. 119, 105625 (2019)
DOI URL |
[35] | J.R. Chen, W.T. Tsai, Electrochim. Acta 56, 1746 (2011) |
[36] |
A. Safdar, L.Y. Wei, A. Snis, Z. Lai, Mater. Charact. 65, 8 (2012)
DOI URL |
[37] |
Y. Bai, X. Gai, S.J. Li, L.C. Zhang, Y.J. Liu, Y.L. Hao, X. Zhang, R. Yang, Y.B. Gao, Corros. Sci. 123, 289 (2017)
DOI URL |
[38] | W.K. Hao, Z.Y. Liu, W. Wu, X.G. Li, C.W. Du, D.W. Zhang, Mater. Sci. Eng. A 710, 318 (2018) |
[39] |
J.S. Jesus, L.P. Borrego, J.A.M. Ferreira, J.D. Costa, C. Capela, Eng. Fail. Anal. 118, 104852 (2020)
DOI URL |
[40] | S. Baragetti, E.V. Arcieri, Int. J. Fatigue 112, 301 (2018) |
[1] | Shuilong Huang, Qingjun Chen, Li Ji, Kan Wang, Guosheng Huang. Microstructure and Internal Friction Behavior of Laser 3D Printed Fe-Based Amorphous Composites [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 196-204. |
[2] | Chunquan Liu, Xianhua Chen, Yulong Wu, Yaobo Hu, Wei Zhang, Yusheng Zhang, Jingying Bai, Fusheng Pan. Improved Corrosion Resistance of Ultrafine-Grained Mg-Gd-Zr Alloy Fabricated by Surface Friction Treatment [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(8): 1281-1291. |
[3] | Long Chen, Xintong Lian, Zhong Xi, Tengshi Liu, Qingxiao Feng, Hualong Li, Yixin Shi, Han Dong. A Study of Rust Layer of Ultra-Thin Cast Strip Steel Containing 0.10% Sb in Simulated Industrial Atmosphere [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(8): 1371-1384. |
[4] | Yu-Jin Nie, Jian-Wei Dai, Xiao-Bo Zhang. Effect of Ag Addition on Microstructure, Mechanical and Corrosion Properties of Mg-Nd-Zn-Zr Alloy for Orthopedic Application [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(2): 295-309. |
[5] | Minghui Zhou, Hui Sun, Yanming Gan, Cheng Ji, Yan Chen, Yanjin Lu, Jinxin Lin, Qiang Wang. Tuning the Corrosion Resistance, Antibacterial Activity, and Cytocompatibility by Constructing Grooves on the Surface of Ti6Al4V3Cu Alloy [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(12): 1979-1998. |
[6] | Tong Bu, Ruijie Jia, Tao Ying, Andrej Atrens, Pengbo Chen, Dajiang Zheng, Fuyong Cao. A Green Conversion Coating on a Magnesium Alloy for Corrosion Protection [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(10): 1630-1648. |
[7] | Chao Liu, Yilun Li, Xuequn Cheng, Xiaogang Li. Recent Advances on the Corrosion Resistance of Low-Density Steel: A Review [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1055-1067. |
[8] | You Lv, Chao Zhang, Yupeng Zhang, Qishi Wang, Xinxin Zhang, Zehua Dong. Microstructure and Corrosion Resistance of Plasma Electrolytic Oxidized Recycled Mg Alloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(6): 961-974. |
[9] | Sijie Qin, Xiongcheng Xu, Yanjin Lu, Liu Li, Tingting Huang, Jinxin Lin. Doping Gd3+ Ion in PDA-PHBV Coating on Ti6Al4V Alloy for Enhancing Corrosion Resistance and Proliferation of Human Gingival Fibroblasts and Human Umbilical Vein Endothelial Cells [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 812-824. |
[10] | Minmin Li, Zhe Qin, Yan Yang, Xiaoming Xiong, Gang Zhou, Xiaofei Cui, Bin Jiang, Xiaodong Peng, Fusheng Pan. Microstructure and Corrosion Properties of Duplex-Structured Extruded Mg-6Li-4Zn-xMn Alloys [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 867-878. |
[11] | Yujian Wang, Shuo Chu, Zhijun Wang, Junjie Li, Jincheng Wang. On Ti6Al4V Microsegregation in Electron Beam Additive Manufacturing with Multiphase-Field Simulation Coupled with Thermodynamic Data [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 425-438. |
[12] | Sharafadeen Kunle Kolawole, Ling Ren, Muhammad Ali Siddiqui, Ihsan Ullah, Hai Wang, Shuyuan Zhang, Ji Zhang, Ke Yang. Optimized Mechanical Properties, Corrosion Resistance and Bactericidal Ability of Ti-15Zr-xCu Biomedical Alloys During Aging Treatment [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(2): 304-316. |
[13] | Zelei Zhang, Atsushi Kitada, Kazuhiro Fukami, Kuniaki Murase. Aluminum Electroplating on AZ31 Magnesium Alloy with Acetic Anhydride Pretreatment [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(12): 1996-2006. |
[14] | Xin-Tong Lian, Long Chen, Zeng-Wei Fan, Teng-Shi Liu, De-Xiang Xu, Han Dong. Effects of Modified Inclusions and Precipitates Alloyed by Rare Earth Element on Corrosion and Impact Properties in Low Alloy Steel [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(10): 1719-1730. |
[15] | Fan Yang, Daigen Zhu, Menglei Jiang, Hui Liu, Shiri Guo, Qingyan Wang, Hui Wang, Kai Zhang, Aijun Huang, Juan Hou. Effect of Heat Treatment on the Microstructure, Mechanical Properties and Corrosion Resistance of Selective Laser Melted 304L Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(10): 1688-1702. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||