Acta Metallurgica Sinica (English Letters) ›› 2025, Vol. 38 ›› Issue (6): 981-1002.DOI: 10.1007/s40195-025-01823-3
Previous Articles Next Articles
Wangjian Yu1, Rui Hu1(), Guoqiang Shang2(
), Xian Luo1, Hong Wang1
Received:
2024-10-05
Revised:
2024-11-15
Accepted:
2024-12-24
Online:
2025-06-10
Published:
2025-03-12
Contact:
Rui Hu, Wangjian Yu, Rui Hu, Guoqiang Shang, Xian Luo, Hong Wang. Correlation Mechanism Between Microstructure and Fatigue Crack Propagation Behavior of Ti-Mo-Cr-V-Nb-Al Titanium Alloys[J]. Acta Metallurgica Sinica (English Letters), 2025, 38(6): 981-1002.
Add to citation manager EndNote|Ris|BibTeX
Mo | Al | Cr | V | Nb | Zr | Sn | Ti |
---|---|---|---|---|---|---|---|
6.92 | 3.71 | 2.72 | 1.52 | 2.09 | 1.13 | 1.05 | Bal. |
Table 1 Chemical compositions of the Ti-Mo-Cr-V-Nb-Al alloy (wt%)
Mo | Al | Cr | V | Nb | Zr | Sn | Ti |
---|---|---|---|---|---|---|---|
6.92 | 3.71 | 2.72 | 1.52 | 2.09 | 1.13 | 1.05 | Bal. |
Fig. 1 Tensile properties (including tensile strength (Rm), yield strength (RP0.2), elongation (A), and section shrinkage (Z)) of the Ti-Mo-Cr-V-Nb-Al series titanium alloys at room temperature
Fig. 4 a Fatigue crack propagation rate curves for the three microstructures; b Paris formula fitting; c BW threshold test results; d BM threshold test results
Microstructure | C | m |
---|---|---|
BW | 1.04 × 10-10 | 2.51 |
LM | 2.21 × 10-10 | 2.30 |
BM | 6.62 × 10-11 | 2.72 |
Table 2 Parameters derived from the fitting of the Paris formula
Microstructure | C | m |
---|---|---|
BW | 1.04 × 10-10 | 2.51 |
LM | 2.21 × 10-10 | 2.30 |
BM | 6.62 × 10-11 | 2.72 |
Fig. 5 Fitted curves of fatigue crack propagation rates for the three microstructures: a fitted curve of the BW material; b fitted curve of the LM material; c fitted curve of the BM material; d comparison of three curves
Microstructure type | Constant α | ∆Kth (MPa·m1/2) | KC (MPa·m1/2) |
---|---|---|---|
BW | 3.72 | 2.90 | 89.37 |
LM | 4.95 | 1.95 | 118.51 |
BM | 3.59 | 2.95 | 61.59 |
Table 3 Values of constant α, ∆Kth, and KC from three microstructure fits
Microstructure type | Constant α | ∆Kth (MPa·m1/2) | KC (MPa·m1/2) |
---|---|---|---|
BW | 3.72 | 2.90 | 89.37 |
LM | 4.95 | 1.95 | 118.51 |
BM | 3.59 | 2.95 | 61.59 |
Fig. 6 BW fracture morphologies: a-d fracture morphologies near the fatigue source region, cutting through the αP particles for propagation, and secondary cracks along the αP/β-phase interface; e-h fracture morphologies in the steady state propagation region, with a large number of secondary cracks and more obvious fatigue striations; i-l fracture morphologies at the late stage of the steady state propagation and the rapid propagation region, with a large number of macroscopic shear bands and dimples
Fig. 7 LM fracture morphologies: a-d fracture morphologies near the fatigue source area, cut through the β-grain propagation, crack deflection at the grain boundary, small secondary cracks and fatigue striations can be observed in the magnified image; e-g fracture morphologies in the steady state propagation area, a large number of secondary cracks and apparent fatigue striations; h-l fracture morphologies in the late stage of steady state propagation and rapid propagation area, deep secondary cracks and prominent quasi-cleavage surfaces are observed, and a large number of macroscopic shear zones and terrace features are also found
Fig. 8 BM fracture morphologies: a, b fracture morphologies near the fatigue source region, cutting through the αP particles and producing secondary cracks at the same time; c-h fracture morphologies in the steady state propagation region, with a large number of secondary cracks and fatigue striations, and a spherical crater produced by winding around the equiaxed αP particles is observed; i-l fracture morphologies in the late stage of the steady state propagation and the rapid propagation region, with a large number of horizontally extended macroscopic shear bands, and the enlarged image can see that it is shear elongation dimples
Fig. 9 Microscopic features of BW fracture profile: a-c macroscopic crack propagation paths of the profile with increasing crack propagation rate; d-g secondary cracks produced along αGB or αP particles during steady state propagation; h, i deeper secondary cracks produced along αGB during rapid propagation
Fig. 10 Microscopic features of LM fracture profiles: a-c macroscopic crack propagation paths of the profile with increasing crack propagation rate; d-f crack deflection at grain boundaries during steady state propagation; g-i deeper secondary cracks produced during the rapid propagation phase
Fig. 11 Microscopic features of the BM fracture profile: a-c macroscopic crack propagation paths of the profile with increasing crack propagation rate; d secondary cracks generated during steady state propagation; e-g cracks expand around equiaxed αP particles during steady state propagation; h, i microcracks with micropores generated below the main cracks during the rapid propagation phase
Fig. 12 Microstructural characteristics of three microstructures near the fracture: a-c IPF orientation, phase, and KAM diagrams of BW structure; d-f IPF orientation, phase, and KAM diagrams of LM structure; g-i IPF orientation, phase, and KAM diagrams of BM structure
Fig. 14 a-c Crystal arrangements of the α-phase of BW, LM, and BM structures, respectively; d-f frequency statistics of the angle between the c-axis of the α-phase and the loading direction of BW, LM, and BM microstructures, respectively
Fig. 17 Secondary crack in BW that develops below the primary crack during the rapid propagation stage and expands parallel to the primary crack direction
Fig. 18 EBSD microscopic characterization of secondary cracks in BW, including IPF orientation and analysis of α particles orientation and slip traces around cracks
Fig. 19 EBSD microscopic characterization of BW secondary crack: a GND diagram; b phase diagram; c crystal arrangement; d α-phase orientation distribution
[1] | D. Banerjee, J.C. Williams, Acta Mater. 61, 844 (2013) |
[2] | C. Cui, B. Hu, L. Zhao, S. Liu, Mater. Des. 32, 1684 (2011) |
[3] | Y. Li, H. Fang, R. Chen, S. Sun, X. Xue, J. Guo, Mater. Des. 231, 112022 (2023) |
[4] | Z. Du, S. Xiao, L. Xu, J. Tian, F. Kong, Y. Chen, Mater. Des. 55, 183 (2014) |
[5] | K.S. Chan, Int. J.Fatigue 32, 1428 (2010) |
[6] | J.A. Hall, Int. J.Fatigue 19, 23 (1997) |
[7] | D.S. Dugdale, J. Mech. Phys. Solids 8, 100 (1960) |
[8] | K. Tanaka, Eng. Fract. Mech. 6, 493 (1974) |
[9] | X.L. Zheng, M.A. Hirt, Eng. Fract. Mech. 18, 965 (1983) |
[10] | P. Paris, F. Erdogan, J. Basic Eng. 85, 528 (1963) |
[11] | W.C. Connors, Mater. Charact. 33, 245 (1994) |
[12] | A. Shyam, E. Lara-Curzio, Lara-Curzio, Int. J. Fatigue 32, 1843 (2010) |
[13] | Z. Zhang, C. Huang, X. Wen, M. Wan, Y. Zhao, S. Ji, W. Zeng, Eng. Fract. Mech. 266, 108404 (2022) |
[14] | P. Wang, L. Ye, X. Liu, Y. Dong, L. Zhao, Int. J. Fatigue 177, 107927 (2023) |
[15] | H. Wang, Q. Zhao, S. Xin, Y. Zhao, W. Zhou, W. Zeng, Mater. Sci. Eng. A 821, 141626 (2021) |
[16] | W. Zhu, J. Lei, B. Su, Q. Sun, Mater. Sci. Eng. A 782, 139248 (2020) |
[17] | B. Wang, W. Zeng, Z. Zhao, R. Jia, J. Xu, Q. Wang, Int. J. Plast. 177, 103986 (2024) |
[18] | S. Ueki, Y. Mine, Y.L. Chiu, P. Bowen, K. Takashima, Mater. Sci. Eng. A 890, 145885 (2024) |
[19] | Z. Liu, S.S. Dash, J. Zhang, T. Lyu, L. Lang, D. Chen, Y. Zou, Int. J. Plast. 172, 103819 (2024) |
[20] | G.Q. Wu, C.L. Shi, W. Sha, A.X. Sha, H.R. Jiang, Mater. Des. 46, 668 (2013) |
[21] | F. Bridier, P. Villechaise, J. Mendez, Acta Mater. 56, 3951 (2008) |
[22] | S. Suri, G.B. Viswanathan, T. Neeraj, D.H. Hou, M.J. Mills, Acta Mater. 47, 1019 (1999) |
[23] | C.J. Szczepanski, S.K. Jha, J.M. Larsen, J.W. Jones, Jones, Metall. Mater. Trans. A 43, 4097 (2012) |
[24] | K. Nakajima, K. Terao, T. Miyata, Mater. Sci. Eng. A 243, 176 (1998) |
[25] | D. Eylon, C.M. Pierce, Metall. Trans. A 7, 111 (1976) |
[26] | B. Liu, K. Wang, R. Bao, F. Sui, Int. J. Fatigue 137, 105622 (2020) |
[27] | T. Sun, Y. Liu, S.J. Li, J.P. Li, Acta Metall. Sin.-Engl. Lett. 32, 869 (2019) |
[28] |
K.S.R. Chandran, Nat. Mater. 4, 303 (2005)
PMID |
[29] | F. Meng, R. Zhang, S. Wang, F. Sun, R. Chen, L. Huang, L. Geng, Acta Metall. Sin.-Engl. Lett. 37, 763 (2024) |
[30] | Y. Long, K. Liao, X. Huang, Mater. Sci. Eng. A 856, 144026 (2022) |
[31] | Z. Xu, C. Huang, M. Wan, C. Tan, Y. Zhao, S. Ji, W. Zeng, Int. J. Fatigue 156, 106678 (2022) |
[32] | W. Pantleon, Scr. Mater. 58, 994 (2008) |
[33] | C. Sarrazin-Baudoux, Int. J. Fatigue 27, 773 (2005) |
[34] | J.E. Hack, G.R. Leverant, Metall. Trans. A 13, 1729 (1982) |
[35] | K.S. Ravichandran, Int. J. Fracture 44, 97 (1990) |
[36] | W.J. Drury, A.M. Gokhale, S.D. Antolovich, Metall. Mater. Trans. A 26, 2651 (1995) |
[37] | D. Kujawski, A.K. Vasudevan, R.E. Ricker, K. Sadananda, Proc. Struct. Integr. 52, 293 (2024) |
[38] | M.R. Parry, S. Syngellakis, I. Sinclair, Mater. Sci. Eng. A 291, 224 (2000) |
[39] | G. Zhang, Z. Hao, M. Wang, X. Lu, Z. Zhao, Q. Wang, X. Lin, J. Chen, W. Huang, Acta Metall. Sin.-Engl. Lett. 36, 937 (2023) |
[40] | P.J. Noell, J.D. Carroll, B.L. Boyce, Acta Mater. 161, 83 (2018) |
[41] | C. Liu, X. Xu, T. Sun, R. Thomas, J.Q. da Fonseca, M. Preuss, Acta Mater. 253, 118957 (2023) |
[42] | C.C. Wojcik, K.S. Chan, D.A. Koss, Acta Metall. 36, 1261 (1988) |
[43] | C.J. Szczepanski, S.K. Jha, P.A. Shade, R. Wheeler, J.M. Larsen, Int. J. Fatigue 57, 131 (2013) |
[44] | J.P. Hirth, Metall. Trans. 3, 3047 (1972) |
[45] | Y. Guo, T.B. Britton, A.J. Wilkinson, Acta Mater. 76, 1 (2014) |
[46] | F. Bridier, P. Villechaise, J. Mendez, Acta Mater. 53, 555 (2005) |
[47] | S. Balasubramanian, L. Anand, Acta Mater. 50, 133 (2002) |
[48] | Y. Htwe, K. Kwak, D. Kishi, Y. Mine, R. Ding, P. Bowen, K. Takashima, Mater. Sci. Eng. A 715, 315 (2018) |
[49] | M.R. Bache, W.J. Evans, H.M. Davies, J. Mater. Sci. 32, 3435 (1997) |
[50] | I. Bantounas, D. Dye, T.C. Lindley, Acta Mater. 57, 3584 (2009) |
[51] | C. Lavogiez, S. Hémery, P. Villechaise, Scr. Mater. 183, 117 (2020) |
[1] | Wei Pan, Bin Xu, Chong Li. Effects of Groove Shape on Microstructure and Mechanical Responses of Laser-Directed Energy Deposition-Repaired GH4099 Ni-Based Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(6): 1003-1011. |
[2] | Xiang Fei, Naicheng Sheng, Zhaokuang Chu, Han Wang, Shijie Sun, Yuping Zhu, Shigang Fan, Jinjiang Yu, Guichen Hou, Jinguo Li, Yizhou Zhou, Xiaofeng Sun. Design Strategy for Synergistic Strengthening of W and Al in High-W Superalloys [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(6): 1057-1068. |
[3] | X. W. Shang, Z. G. Lu, R. P. Guo, L. Xu. Influence of Hot Isostatic Pressing Temperature on Microstructure and Mechanical Properties of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si Alloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(4): 627-641. |
[4] | Yang Feng, Shuai Wang, Yang Zhao, Li-Qing Chen. Achieving High-Temperature Oxidation and Corrosion Resistance in Fe-Mn-Cr-Al-Cu-C TWIP Steel via Annealing Control [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(4): 642-656. |
[5] | Nafiseh Mollaei, Seyed Mahmood Fatemi, Mohammad Reza Aboutalebi, Seyed Hossein Razavi, Wiktor Bednarczyk. Microstructure, Texture, Mechanical Properties, and Corrosion Behavior of Biodegradable Zn-0.2Mg Alloy Processed by Multi-Directional Forging [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 507-525. |
[6] | Yifan Li, Shengyao Ma, Xinrui Zhang, Tong Xi, Chunguang Yang, Hanyu Zhao, Ke Yang. Copper Precipitation Behavior and Mechanical Properties of Cu-Bearing Ferritic Stainless Steel with Different Cr Addition [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 383-395. |
[7] | Hongbin Liu, Zhenqiang Xing, Yitong Yang, Jingyu Pang, Wen Li, Zhengwang Zhu, Long Zhang, Aimin Wang, Haifeng Zhang, Hongwei Zhang. A Novel BCC/B2 Structural Nb38Ti35Al15V6Cr4(TaHfMoW)2 Refractory High-Entropy Alloy with Excellent Specific Yield Strength-Plasticity Synergy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 396-406. |
[8] | Jian Dong, Jufu Jiang, Ying Wang, Minjie Huang, Jingbo Cui, Tao Song. Effect of Solution and Aging Treatment on Microstructure and Mechanical Properties of Al-14Si-5Cu-1.1Mg-2.3Ni-0.3La Alloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 449-464. |
[9] | Wei Qiu, Shuang-Long Li, Zhao-Yuan Lu, Sen-Mao Zhang, Jian Chen, Wei Chen, Lang Gan, Wei Li, Yan-Jie Ren, Jun Luo, Mao-Hai Yao, Wen Xie. Effects of CeO2 Content on the Microstructure and Mechanical Properties of ZK60 Mg Alloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(2): 287-298. |
[10] | Xiaoqing Liu, Xianke Zhang, Jinwei Gao, Xiurong Zhu, Lei Xiao, Zhengchi Yang, Lijun Tan, Chubin Yang, Biao Wu, Huixin Chen, Jiayu Huang. Achieving Ultrahigh Strength in Mg-1.2Y-1.2Ni (at.%) Alloy via Tailoring Extrusion Rate [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(2): 299-312. |
[11] | Dongfang Lou, Mingda Zhang, Yuping Ren, Hongxiao Li, Gaowu Qin. Fabrication of Zn-0.5Mn-0.05 Mg Micro-Tube with Suitable Strength and Ductility for Vascular Stent Application [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(2): 327-337. |
[12] | Li-Lan Gao, Jiang Ma, Yan-Song Tan, Xiao-Hao Sun, Qi-Jun Gao, De-Bao Liu, Chun-Qiu Zhang. Effect of Free-End Torsion on the Corrosion and Mechanical Properties for Mg-3Zn-0.2Ca Alloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(1): 59-70. |
[13] | Sai Chen, Shuangjie Chu, Bo Mao. Iron-Based Metal Matrix Composite: A Critical Review on the Microstructural Design, Fabrication Processes, and Mechanical Properties [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(1): 1-44. |
[14] | Jian Zang, Jianrong Liu, Qingjiang Wang, Haibing Tan, Bohua Zhang, Xiaolin Dong, Zibo Zhao. Microstructure and Texture Evolution of Ti65 Alloy during Thermomechanical Processing [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(1): 107-120. |
[15] | Han Wang, Shijie Sun, Naicheng Sheng, Guichen Hou, Jinguo Li, Yizhou Zhou, Xiaofeng Sun. Effect of Carbon on the Microstructures and Stress Rupture Properties of a Polycrystalline Ni-Based Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(1): 151-163. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||