Acta Metallurgica Sinica (English Letters) ›› 2025, Vol. 38 ›› Issue (3): 419-434.DOI: 10.1007/s40195-024-01784-z
Previous Articles Next Articles
Hao Zhang, Le Zai, Xiaohuai Xue()
Received:
2024-05-21
Revised:
2024-08-19
Accepted:
2024-08-24
Online:
2025-03-10
Published:
2024-10-22
Contact:
Xiaohuai Xue, xhxue@sjtu.edu.cn
Hao Zhang, Le Zai, Xiaohuai Xue. Enhancing the Mechanical Properties Induced by Ta Microalloying in TIG-Welded Ti2AlNb-Based Intermetallic Alloy[J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 419-434.
Add to citation manager EndNote|Ris|BibTeX
Materials | Element (wt%) | ||||
---|---|---|---|---|---|
Ti | Al | Nb | Mo | Ta | |
Ti-22Al-25Nb-0.5Mo (BM) | Balance | 10.80 | 42.21 | 0.89 | - |
Ta-0# | Balance | 10.35 | 41.63 | - | - |
Ta-0.5# | Balance | 10.63 | 42.10 | - | 0.56 |
Ta-1# | Balance | 10.16 | 42.36 | - | 0.98 |
Ta-1.5# | Balance | 10.24 | 41.68 | - | 1.59 |
Table 1 Chemical composition (wt%) of Ti-22Al-25Nb-0.5Mo (BM) and four kinds of alloy welding wires
Materials | Element (wt%) | ||||
---|---|---|---|---|---|
Ti | Al | Nb | Mo | Ta | |
Ti-22Al-25Nb-0.5Mo (BM) | Balance | 10.80 | 42.21 | 0.89 | - |
Ta-0# | Balance | 10.35 | 41.63 | - | - |
Ta-0.5# | Balance | 10.63 | 42.10 | - | 0.56 |
Ta-1# | Balance | 10.16 | 42.36 | - | 0.98 |
Ta-1.5# | Balance | 10.24 | 41.68 | - | 1.59 |
BM | Yield strength (MPa) | Tensile strength (MPa) | Elongation (%) | Hardness (HV) |
---|---|---|---|---|
Ti-22Al-25Nb-0.5Mo | 961.36 | 1079.36 | 10.96 | 322.67 |
Table 2 Mechanical properties of Ti-22Al-25Nb-0.5Mo (at room temperature)
BM | Yield strength (MPa) | Tensile strength (MPa) | Elongation (%) | Hardness (HV) |
---|---|---|---|---|
Ti-22Al-25Nb-0.5Mo | 961.36 | 1079.36 | 10.96 | 322.67 |
Fig. 2 a TIG welding process, b the surface appearance of the joints fabricated by TIG, c dimensions of the welding assembly, d geometry of the tensile sample
Base current (A) | Peak current (A) | Frequency of the pulse current (Hz) | Frontal protection of argon gas (L/min) | Back protection of argon gas (L/min) | Welding speed (mm/min) | Voltage (V) | Purity of Argon (%) |
---|---|---|---|---|---|---|---|
70 | 130 | 15,000 | 15 | 5 | 200 | 12 | 99.999 |
Table 3 Parameters for TIG process
Base current (A) | Peak current (A) | Frequency of the pulse current (Hz) | Frontal protection of argon gas (L/min) | Back protection of argon gas (L/min) | Welding speed (mm/min) | Voltage (V) | Purity of Argon (%) |
---|---|---|---|---|---|---|---|
70 | 130 | 15,000 | 15 | 5 | 200 | 12 | 99.999 |
Samples | a (Å) | ∆a/a (%) |
---|---|---|
Ta-0 | 3.2394 | - |
Ta-0.5 | 3.2355 | 0.120 |
Ta-1 | 3.2329 | 0.201 |
Ta-1.5 | 3.2306 | 0.272 |
Table 4 Lattice parameter (a, Å) and lattice strain (∆a/a, %) of FZ of the four kinds of joints
Samples | a (Å) | ∆a/a (%) |
---|---|---|
Ta-0 | 3.2394 | - |
Ta-0.5 | 3.2355 | 0.120 |
Ta-1 | 3.2329 | 0.201 |
Ta-1.5 | 3.2306 | 0.272 |
Fig. 5 SEM micrographs of Ta-0 a and Ta-1 b, including FZ (A), PMZ (B), HAZ (C), and BM (D). The histogram at the lower right is the phase composition and proportion of each region
Fig. 7 Comparison of microstructural evolution between FZs of Ta-0, Ta-0.5, Ta-1, and Ta-1.5: a-d IPF, Ta-0, Ta-0.5, Ta-1, and Ta-1.5, respectively, e-h grain boundaries maps, Ta-0, Ta-0.5, Ta-1, and Ta-1.5, respectively, i-l KAM, Ta-0, Ta-0.5, Ta-1, and Ta-1.5, respectively, and corresponding legends are on the right
Fig. 8 Graphical presentation of EBSD analysis for FZ of Ta-0, Ta-0.5, Ta-1, and Ta-1.5: a, b B2 grain size and its distribution, c, d KAM for B2 grains
Fig. 9 TEM images from the FZ of Ta-1: a low multiple and b high multiple of BF image, respectively, c SAED patterns of the red circle marked regions in a
Fig. 10 SEM fracture surfaces of Ta-0 a, b, Ta-0.5 c, d, Ta-1 e, f, and Ta-1.5 g, h. The right column images show the corresponding higher magnification of the selected rectangular regions in the left column images
Fig. 11 a-d Optical microstructure of the joints fabricated of Ta-0, Ta-0.5, Ta-1, and Ta-1.5, respectively; e-h hardness profiles for Ta-0, Ta-0.5, Ta-1, and Ta-1.5, respectively. Including FZ (A), PMZ (B), HAZ (C), and BM (D)
Fig. 12 Comparison of hardness statistics of each part of Ta-0, Ta-0.5, Ta-1, and Ta-1.5 welded joints from Fig. 11e and f. Including FZ (A), PMZ (B), HAZ (C), and BM (D)
Fig. 13 Mechanism schematics of the microstructure evolution of the studied samples: a Ta-0 and b Ta-1 are the microstructure solidification process of liquid-solid; c influence of temperature gradient on growth mode and nucleation; d the effect of Ta element on the constitutional undercooling
Parameter | Physical description | Value | Refs | ||
---|---|---|---|---|---|
Bi | Ta | Strengthening coefficient of solute Ta | 164 MPa·at.−2/3 | [ | |
Al | Strengthening coefficient of solute Al | 285 MPa·at.−2/3 | [ | ||
Nb | Strengthening coefficient of solute Nb | 71 MPa·at.−2/3 | [ | ||
Xi | Ta-0.5 | The relative atomic mass of the Ta element in the Ta-0.5 joint | 0.1 at.% | Experimental value | |
Ta-1 | The relative atomic mass of the Ta element in the Ta-1 joint | 0.2 at.% | Experimental value | ||
Ta-1.5 | The relative atomic mass of the Ta element in the Ta-1.5 joint | 0.3 at.% | Experimental value | ||
ky | Hall-Petch constant | 0.75 MPa·m1/2 | [ | ||
α | Dislocation interaction constant | 0.3 | [ | ||
MT | Taylor factor | 2.8 | [ | ||
G | Shear modulus | 39 GPa | [ | ||
b | Magnitude of Burgers vector | 0.28 nm | [ | ||
μ | Step size used in EBSD testing | 5 μm | Experimental value | ||
kHV | Hall-Petch slope in Vickers hardness | 80 HV·mm1/2 | [ |
Table 5 Physical parameters and mechanical features of the Ti alloys involved in calculations
Parameter | Physical description | Value | Refs | ||
---|---|---|---|---|---|
Bi | Ta | Strengthening coefficient of solute Ta | 164 MPa·at.−2/3 | [ | |
Al | Strengthening coefficient of solute Al | 285 MPa·at.−2/3 | [ | ||
Nb | Strengthening coefficient of solute Nb | 71 MPa·at.−2/3 | [ | ||
Xi | Ta-0.5 | The relative atomic mass of the Ta element in the Ta-0.5 joint | 0.1 at.% | Experimental value | |
Ta-1 | The relative atomic mass of the Ta element in the Ta-1 joint | 0.2 at.% | Experimental value | ||
Ta-1.5 | The relative atomic mass of the Ta element in the Ta-1.5 joint | 0.3 at.% | Experimental value | ||
ky | Hall-Petch constant | 0.75 MPa·m1/2 | [ | ||
α | Dislocation interaction constant | 0.3 | [ | ||
MT | Taylor factor | 2.8 | [ | ||
G | Shear modulus | 39 GPa | [ | ||
b | Magnitude of Burgers vector | 0.28 nm | [ | ||
μ | Step size used in EBSD testing | 5 μm | Experimental value | ||
kHV | Hall-Petch slope in Vickers hardness | 80 HV·mm1/2 | [ |
[1] | Z. Zuo, R. Hu, X. Luo, Q. Wang, C. Li, Z. Zhu, J. Lan, S. Liang, H. Tang, K. Zhang, Acta Metall. Sin. -Engl. Lett. 36, 1221 (2023) |
[2] | M. Peters, J. Kumpfert, C.H. Ward, C. Leyens, Adv. Eng. Mater. 5, 419 (2003) |
[3] | N. Abdoshahi, M. Dehghani, A.V. Ruban, M. Friák, M. Šob, J. Spitaler, D. Holec, Acta Mater. 240, 118268 (2022) |
[4] | T. Yu, Y. Du, G. Fan, R. Xu, R. Barabash, N. Hansen, X. Huang, Y. Zhang, Acta Mater. 202, 149 (2021) |
[5] | K. Kothari, R. Radhakrishnan, N.M. Wereley, Prog. Aeosp. Sci. 55, 1 (2012) |
[6] | H. Demirtas, O. Yilmaz, L. Subasi, A. Gunaydin, G.M. Bilgin, A. Orhangul, G. Akbulut, S. Nesli, Procedia Cirp 102, 240 (2021) |
[7] | R. Canumalla, T.V. Jayaraman, Aerospace 10, 211 (2023) |
[8] | D. Banerjee, A.K. Gogia, T.K. Nandi, V.A. Joshi, Acta Metall. 36, 871 (1988) |
[9] | T.K. Nandy, D. Banerjee, Intermetallics 8, 915 (2000) |
[10] | F. Zhang, W. Zeng, P. Zhang, H. Ma, J. Xu, J. Mater. Sci. Technol. 174, 249 (2024) |
[11] | H. Zhang, N. Yan, H. Liang, Y. Liu, J. Mater. Sci. Technol. 80, 203 (2021) |
[12] | H. Wu, P. Zhang, L. Wang, H. Zhao, Z. Xu, Appl. Surf. Sci. 256, 1333 (2009) |
[13] | F. Tang, T. Awane, M. Hagiwara, Scr. Mater. 46, 143 (2002) |
[14] | J. Peng, S. Li, Y. Mao, X. Sun, Mater. Lett. 53, 57 (2002) |
[15] | B. Shao, Y. Zong, D. Wen, Y. Tian, D. Shan, Mater. Charact. 114, 75 (2016) |
[16] | S. Liu, J. Cao, Y. Zhou, C. Hou, S. Dai, X. Huang, J. Alloys Compd. 925, 166715 (2022) |
[17] | X. Cheng, Y. Yu, D. Zhang, T. Liu, J. Liu, J. Shen, J. Therm. Spray Technol. 29, 1804 (2020) |
[18] | C. Leyens, H. Gedanitz, Scr. Mater. 41, 901 (1999) |
[19] | W. Chen, J.W. Li, L. Xu, B. Lu, Adv. Mater. Process. 172, 23 (2014) |
[20] | K. Zhang, Z. Lei, Y. Chen, K. Yang, Y. Bao, Mater. Sci. Eng. A 744, 436 (2019) |
[21] |
M.Z. Hussain, J. Xiong, J. Li, F. Siddique, L.J. Zhang, Y. Du, X.R. Zhou, J. Mater. Sci. Technol. 120, 214 (2022)
DOI |
[22] | C.H. Cadden, N.Y.C. Yang, T.H. Headley, Weld. J. 8, 316 (1997) |
[23] | D. Cui, Q. Wu, F. Jin, C. Xu, M. Wang, Z. Wang, J. Li, F. He, J. Li, J. Wang, Acta Metall. Sin. -Engl. Lett. 36, 611 (2023) |
[24] | L. Tan, Z. Yao, W. Zhou, H. Guo, Y. Zhao, Aerosp. Sci. Technol. 14, 302 (2010) |
[25] | K. Zhang, Z. Lei, Y. Chen, K. Yang, Y. Bao, Rare Met. 40, 2143 (2021) |
[26] | M. Junaid, F.N. Khan, T. Shahbaz, H. Saleem, J. Haider, Acta Metall. Sin. -Engl. Lett. 34, 1395 (2021) |
[27] | J. Du, H. Liu, F. Wang, W. Bao, N. Feng, H. Li, T. Liu, J. Mater. Res. Technol. 28, 2455 (2024) |
[28] | A.B. Short, Mater. Sci. Technol. 25, 309 (2009) |
[29] | K. Zhang, Z. Lei, L. Ni, H. Zhou, Y. Chen, J. Mater. Process. Technol. 288, 116848 (2021) |
[30] | M.Z. Hussain, X. Jiangtao, L. Jinglong, F. Siddique, L.J. Zhang, X.R. Zhou, Mater. Sci. Eng. A 845, 143157 (2022) |
[31] | H. Fang, R. Chen, X. Chen, Y. Yang, Y. Su, H. Ding, J. Guo, Intermetallics 104, 43 (2019) |
[32] | Y. Zhong, Y. Luo, X. Li, J. Cui, Sci. Rep. 9, 18879 (2019) |
[33] | Q. Wang, Y. Li, R. Zhou, Z. Li, L. Xie, L. Zhang, Met. Mater. Int. 30, 1459 (2024) |
[34] | W. Wang, Z. Wang, S. Yin, S. Luo, M. Zhu, Comput. Mater. Sci. 167, 52 (2019) |
[35] | X. Lin, T.M. Yue, H.O. Yang, W.D. Huang, Metall. Mater. Trans. A 38, 127 (2007) |
[36] | L. Zai, X. Tong, Y. Wang, H. Zhang, X. Xue, J. Mater. Sci. Technol. 205, 1 (2025) |
[37] | L. Zai, X. Tong, H. Zhang, X. Xue, J. Mater. Res. Technol. 28, 3449 (2024) |
[38] | I. Toda-Caraballo, P.E.J. Rivera-Díaz-Del-Castillo, Acta Mater. 85, 14 (2015) |
[39] | M.F. Ashby, Philosoph. Mag. 21, 399 (1970) |
[40] | D. Yang, L. Xiong, H. Liao, G. Yang, X. Wang, S. Liu, Acta Metall. Sin. -Engl. Lett. 37, 373 (2024) |
[41] | J. Dai, T. Wang, L. Chai, X. Hu, L. Zhang, N. Guo, J. Alloys Compd. 826, 154243 (2020) |
[42] | L. Chai, H. Wu, Z. Zheng, H. Guan, H. Pan, N. Guo, B. Song, J. Alloys Compd. 741, 116 (2018) |
[43] | G.H. Zhao, X.Z. Liang, B. Kim, P.E.J. Rivera-Díaz-Del-Castillo, Mater. Sci. Eng. A 756, 156 (2019) |
[44] | D. Wu, J. Zhang, J.C. Huang, H. Bei, T.G. Nieh, Scr. Mater. 68, 118 (2013) |
[45] | L. Kubin, B. Devincre, T. Hoc, Mater. Sci. Eng. A 483-484, 19 (2008) |
[1] | Gang Zeng, Hong Liu, Jing-Peng Xiong, Jian-Long Li, Yong Liu. Enhanced Grain Refining Effect of Mg-Zr Master Alloy on Magnesium Alloys via a Synergistic Strategy Involving Heterogeneous Nucleation and Solute-Driven Growth Restriction [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(8): 1354-1366. |
[2] | Xiang Kong, Yu Wang, Hong Xu, Haotian Fan, Yuewu Zheng, Beibei Xie. NbB2 Modified Al-Cu Alloys Fabricated by Freeze-Ablation Casting under High Cooling Rate Solidification [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(5): 921-938. |
[3] | Ronghe Gao, Feng Li, Huaqiu Du, Pengda Huo. Dynamic Recrystallization Mechanism and Texture Evolution during Interactive Alternating Extruded Magnesium Alloy [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(8): 1292-1304. |
[4] | Yan-Yi Xu, Jing Zhao, Chun-Yang Ye, Yan-Ping Shen, Xin-Cheng Miao, Yun-Hu Zhang, Qi-Jie Zhai. Distributions of Electromagnetic Fields and Forced Flow and Their Relevance to the Grain Refinement in Al-Si Alloy Under the Application of Pulsed Magneto-Oscillation [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(2): 254-274. |
[5] | Yan Song, Hongxiang Jiang, Lili Zhang, Shixin Li, Jiuzhou Zhao, Jie He. A Model Describing Solidification Microstructure Evolution in an Inoculated Aluminum Alloys [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(6): 861-871. |
[6] | Jie Wei, Qudong Wang, Li Zhang, Mahmoud Ebrahimi, Haiyan Jiang, Wenjiang Ding. Effects of Gd Addition on the Microstructure and Tensile Properties of Mg-4Al-5RE Alloy Produced by Three Different Casting Methods [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(10): 1361-1374. |
[7] | Massab Junaid, Fahd Nawaz Khan, Tauheed Shahbaz, Haris saleem, Julfikar Haider. Influence of Filler on the Microstructure, Mechanical Properties and Residual Stresses in TIG Weldments of Dissimilar Titanium Alloys [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(10): 1395-1406. |
[8] | Miao Wang, Xing-Wei Huang, Peng Xue, Chuan-Yong Cui, Qing-Chuan Zhang. Effect of Rotation Rate on Microstructure and Mechanical Properties of Friction Stir Processed Ni-Fe-Based Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(10): 1407-1420. |
[9] | Fenghua Wang, Peng Su, Linxin Qin, Shuai Dong, Yunliang Li, Jie Dong. Microstructure and Mechanical Properties of Mg-3Al-Zn Magnesium Alloy Sheet by Hot Shear Spinning [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1226-1234. |
[10] | Han Zheng, Liming Fu, Xinbo Ji, Ziyong Li, Yanle Sun, Sixin Zhao, Wei Wang, Aidang Shan. Granular Carbides-Assisted Ultrafine-Ferrite Fabrication in the Pearlitic Steel Without Severe Plastic Deformation and Annealing [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(12): 1645-1656. |
[11] | Qiyu Liao, Wenxin Hu, Qichi Le, Xingrui Chen, Ke Hu, Chunlong Cheng, Chenglu Hu. Microstructure, Mechanical Properties and Texture Evolution of Mg-Al-Zn-La-Gd-Y Magnesium Alloy by Hot Extrusion and Multi-Pass Rolling [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(10): 1359-1368. |
[12] | Wen Wang, Peng Han, Pai Peng, Ting Zhang, Qiang Liu, Sheng-Nan Yuan, Li-Ying Huang, Hai-Liang Yu, Ke Qiao, Kuai-She Wang. Friction Stir Processing of Magnesium Alloys: A Review [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(1): 43-57. |
[13] | Yuan Hou, Zhen-Qiang Zhang, Wei-Dong Xuan, Jiang Wang, Jian-Bo Yu, Zhong-Ming Ren. Grain Refinement During Directionally Solidifying GCr18Mo Steel at Low Pulling Speeds Under an Axial Static Magnetic Field [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(7): 681-691. |
[14] | Ke Zhao, Dan Tang, Jin-Ling Liu, Yi-Guang Wang. Structural Evolution During Mechanical Milling of Bimodal-Sized Al2O3 Particles Reinforced Aluminum Matrix Composite [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(4): 423-430. |
[15] | Ren-Guo Guan, Di Tie. A Review on Grain Refinement of Aluminum Alloys: Progresses, Challenges and Prospects [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(5): 409-432. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||