Acta Metallurgica Sinica (English Letters) ›› 2025, Vol. 38 ›› Issue (3): 407-418.DOI: 10.1007/s40195-024-01804-y
Previous Articles Next Articles
Jingxiang Xu1(), Yuyan Yang2, Ruiyang Huang1, Xinwei Yuan1(
), Huakang Bian2,3(
), Zhenhua Chu1, Yang Wang4, Yanhua Lei5
Received:
2024-08-27
Revised:
2024-10-30
Accepted:
2024-11-07
Online:
2025-03-10
Published:
2025-01-04
Contact:
Jingxiang Xu, jxxu@shou.edu.cn;Xinwei Yuan, yuanxinwei1208@gmail.com;Huakang Bian, bianhuakang@shu.edu.cn
About author:
Jingxiang Xu and Yuyan Yang have considered as co-first authors.
Jingxiang Xu, Yuyan Yang, Ruiyang Huang, Xinwei Yuan, Huakang Bian, Zhenhua Chu, Yang Wang, Yanhua Lei. Enhancing the Corrosion Resistance of FeNiCoCrW0.2Al0.1 High-Entropy Alloy in 3.5 wt% NaCl Solution by Bilayer Passivation[J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 407-418.
Add to citation manager EndNote|Ris|BibTeX
Fe | Co | Cr | Ni | W | Al |
---|---|---|---|---|---|
21.10 | 22.20 | 19.60 | 22.20 | 13.90 | 1.00 |
Table 1 Chemical composition of FeCoCrNiW0.2Al0.1 (wt%)
Fe | Co | Cr | Ni | W | Al |
---|---|---|---|---|---|
21.10 | 22.20 | 19.60 | 22.20 | 13.90 | 1.00 |
K-points | Cutoff energy (eV) | Force convergence (eV/Å) | Magnetic mom (μ) | U | J | |
---|---|---|---|---|---|---|
CoO (111) | 4 × 4 × 1 | 480 | 0.01 | 1.90 (Ref. [ | 3.70 (Ref. [ | 0 (Ref. [ |
(3 × 3) | ||||||
NiO (111) | 4 × 4 × 1 | 480 | 0.01 | 2.90 (Ref. [ | 6.30 (Ref. [ | 0 (Ref. [ |
(3 × 3) | ||||||
α-Fe2O3 (0001) | 3 × 3 × 1 | 480 | 0.01 | 4.90 (Ref. [ | 4.00 (Ref. [ | 0 (Ref. [ |
(2 × 2) | ||||||
α-Cr2O3 (0001) | 3 × 3 × 1 | 480 | 0.01 | 3.05 (Ref. [ | 5.00 (Ref. [ | 1.00 (Ref. [ |
(2 × 2) |
Table 2 Parameter settings for DFT calculations for different metal oxides
K-points | Cutoff energy (eV) | Force convergence (eV/Å) | Magnetic mom (μ) | U | J | |
---|---|---|---|---|---|---|
CoO (111) | 4 × 4 × 1 | 480 | 0.01 | 1.90 (Ref. [ | 3.70 (Ref. [ | 0 (Ref. [ |
(3 × 3) | ||||||
NiO (111) | 4 × 4 × 1 | 480 | 0.01 | 2.90 (Ref. [ | 6.30 (Ref. [ | 0 (Ref. [ |
(3 × 3) | ||||||
α-Fe2O3 (0001) | 3 × 3 × 1 | 480 | 0.01 | 4.90 (Ref. [ | 4.00 (Ref. [ | 0 (Ref. [ |
(2 × 2) | ||||||
α-Cr2O3 (0001) | 3 × 3 × 1 | 480 | 0.01 | 3.05 (Ref. [ | 5.00 (Ref. [ | 1.00 (Ref. [ |
(2 × 2) |
Alloy composition | Ecorr (mV) | icorr (A/cm2) | References |
---|---|---|---|
FeCoNiCr0.5 | − 319 | 2.36 × 10-6 | [ |
CoCrFeNiGe0.3 | − 34 | 5.60 × 10-5 | [ |
Al2CrFeCoCuTiNi | − 220 | 1.30 × 10-4 | [ |
Al2CrFeCoCuTiNi2 | − 500 | 6.70 × 10-4 | [ |
Al0.9CoCrFeNiTi0.5 | − 347 | 3.10 × 10-8 | [ |
CoCrFeNi2Mo0.25 | − 260 | 1.25 × 10-7 | [ |
CoCrFeNiMo0.4 | − 261 | 8.20 × 10-8 | [ |
Al0.3CoCrFeNi | − 195 | 8.40 × 10-8 | [ |
(CoCrFeNi)95Nb5 | − 128 | 7.23 × 10-6 | [ |
Co2CrCuFeMnNi | − 787 | 6.95 × 10-6 | [ |
FeCoCrNiW0.2Al0.1 | − 163 ± 14 | (2.24 ± 0.09) × 10-7 | Present work |
Table 3 Comparison of data obtained from polarization tests of various HEAs in 3.5 wt% NaCl
Alloy composition | Ecorr (mV) | icorr (A/cm2) | References |
---|---|---|---|
FeCoNiCr0.5 | − 319 | 2.36 × 10-6 | [ |
CoCrFeNiGe0.3 | − 34 | 5.60 × 10-5 | [ |
Al2CrFeCoCuTiNi | − 220 | 1.30 × 10-4 | [ |
Al2CrFeCoCuTiNi2 | − 500 | 6.70 × 10-4 | [ |
Al0.9CoCrFeNiTi0.5 | − 347 | 3.10 × 10-8 | [ |
CoCrFeNi2Mo0.25 | − 260 | 1.25 × 10-7 | [ |
CoCrFeNiMo0.4 | − 261 | 8.20 × 10-8 | [ |
Al0.3CoCrFeNi | − 195 | 8.40 × 10-8 | [ |
(CoCrFeNi)95Nb5 | − 128 | 7.23 × 10-6 | [ |
Co2CrCuFeMnNi | − 787 | 6.95 × 10-6 | [ |
FeCoCrNiW0.2Al0.1 | − 163 ± 14 | (2.24 ± 0.09) × 10-7 | Present work |
Fig. 4 EIS test data and fitting results: a Nyquist plots of test specimens and b bode plots of test specimens. Hollow dots represent the test data, while solid dots depict the fitting results
Rs (Ω cm2) | Rct (Ω cm2) | Rpas (Ω cm2) | Rpas1 (Ω cm2) | Rpas2 (Ω cm2) | CPEdl (S sn cm−2) | ndl | CPEpas (S sn cm−2) | npas | CPEpas1 (S sn cm−2) | npas1 | CPEpas2 (S sn cm−2) | npas2 | dpas (nm) | dpas1 (nm) | dpas2 (nm) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 d | 10.45 | 1.81 × 104 | 1.18 × 104 | - | - | 1.01 × 10-4 | 0.91 | 3.73 × 10-5 | 0.94 | - | - | 7.12 | - | - | ||
9 d | 7.47 | - | - | 630 | 2430 | - | - | 5.05 × 10-5 | 0.84 | 2.56 × 10-4 | 0.73 | - | 5.26 | 1.04 | ||
24 d | 7.27 | - | - | 1702 | 1310 | - | - | 6.25 × 10-5 | 0.8 | 8.07 × 10-5 | 0.8 | - | 4.25 | 3.29 |
Table 4 Parameter values of circuit elements and estimated passivation film thickness
Rs (Ω cm2) | Rct (Ω cm2) | Rpas (Ω cm2) | Rpas1 (Ω cm2) | Rpas2 (Ω cm2) | CPEdl (S sn cm−2) | ndl | CPEpas (S sn cm−2) | npas | CPEpas1 (S sn cm−2) | npas1 | CPEpas2 (S sn cm−2) | npas2 | dpas (nm) | dpas1 (nm) | dpas2 (nm) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 d | 10.45 | 1.81 × 104 | 1.18 × 104 | - | - | 1.01 × 10-4 | 0.91 | 3.73 × 10-5 | 0.94 | - | - | 7.12 | - | - | ||
9 d | 7.47 | - | - | 630 | 2430 | - | - | 5.05 × 10-5 | 0.84 | 2.56 × 10-4 | 0.73 | - | 5.26 | 1.04 | ||
24 d | 7.27 | - | - | 1702 | 1310 | - | - | 6.25 × 10-5 | 0.8 | 8.07 × 10-5 | 0.8 | - | 4.25 | 3.29 |
Oxidation state | Orbital | Energy peak (original surface 0 nm) | Energy peak (original surface -5 nm) | Energy peak (corroded surface 0 nm) | Energy peak (corroded surface -5 nm) |
---|---|---|---|---|---|
Fe (Fe3+) | 2p3/2 | 710.71 | 710.64 | 710.80 | 710.27 |
Fe (metal) | 2p3/2 | 706.81 | 707.19 | 706.56 | 707.09 |
Cr (Cr (OH)3) | 2p3/2 | 576.99 | 577.02 | 576.70 | 576.54 |
Cr (Cr2O3) | 2p3/2 | 575.70 | 575.75 | 576.00 | 575.61 |
Cr (metal) | 2p3/2 | 573.51 | 574.14 | 573.12 | 574.22 |
Ni (Ni2+) | 2p3/2 | 855.53 | 854.83 | 854.79 | 854.82 |
Ni (metal) | 2p3/2 | 852.33 | 852.87 | 851.83 | 852.72 |
Co (Co2+) | 2p3/2 | 780.76 | 779.28 | 780.13 | 781.19 |
Co (metal) | 2p3/2 | 777.77 | 778.05 | 777.46 | 778.08 |
W (W6+) | 4f7/2 | 35.17 | 35.81 | 35.03 | 35.70 |
W (metal) | 4f7/2 | 30.88 | 31.40 | 30.71 | 31.18 |
Al (Al3+) | 2p3/2 | 73.16 | 73.36 | 73.37 | 73.80 |
O (H2O) | 1s | 532.20 | - | 532.30 | - |
O (O2−) | 1s | 529.64 | 530.41 | 529.54 | 530.31 |
O (OH−) | 1s | 531.28 | 531.58 | 531.32 | 531.59 |
Table 5 Positions of energy peaks and possible oxidation states of the six elements obtained after fitting the XPS core energy level spectra
Oxidation state | Orbital | Energy peak (original surface 0 nm) | Energy peak (original surface -5 nm) | Energy peak (corroded surface 0 nm) | Energy peak (corroded surface -5 nm) |
---|---|---|---|---|---|
Fe (Fe3+) | 2p3/2 | 710.71 | 710.64 | 710.80 | 710.27 |
Fe (metal) | 2p3/2 | 706.81 | 707.19 | 706.56 | 707.09 |
Cr (Cr (OH)3) | 2p3/2 | 576.99 | 577.02 | 576.70 | 576.54 |
Cr (Cr2O3) | 2p3/2 | 575.70 | 575.75 | 576.00 | 575.61 |
Cr (metal) | 2p3/2 | 573.51 | 574.14 | 573.12 | 574.22 |
Ni (Ni2+) | 2p3/2 | 855.53 | 854.83 | 854.79 | 854.82 |
Ni (metal) | 2p3/2 | 852.33 | 852.87 | 851.83 | 852.72 |
Co (Co2+) | 2p3/2 | 780.76 | 779.28 | 780.13 | 781.19 |
Co (metal) | 2p3/2 | 777.77 | 778.05 | 777.46 | 778.08 |
W (W6+) | 4f7/2 | 35.17 | 35.81 | 35.03 | 35.70 |
W (metal) | 4f7/2 | 30.88 | 31.40 | 30.71 | 31.18 |
Al (Al3+) | 2p3/2 | 73.16 | 73.36 | 73.37 | 73.80 |
O (H2O) | 1s | 532.20 | - | 532.30 | - |
O (O2−) | 1s | 529.64 | 530.41 | 529.54 | 530.31 |
O (OH−) | 1s | 531.28 | 531.58 | 531.32 | 531.59 |
Cl coverage (ML) | Substitution energy (eV) | Vacancy formation energy (eV) | ||||||
---|---|---|---|---|---|---|---|---|
NiO | CoO | Cr2O3 | Fe2O3 | NiO | CoO | Cr2O3 | Fe2O3 | |
1/12 | - | - | − 0.03 | − 0.18 | - | - | 3.70 | − 0.85 |
1/9 | − 0.55 | − 1.05 | - | - | 4.41 | 3.70 | - | - |
3/9(4/12) | − 0.43 | − 0.51 | − 0.01 | − 0.18 | 4.19 | 4.04 | 3.17 | − 1.66 |
5/9 | 0.04 | − 0.17 | - | - | 3.13 | 1.42 | - | - |
8/12 | - | - | 0.30 | 0.31 | - | - | 0.01 | − 2.55 |
7/9 | 0.13 | − 0.02 | - | - | 2.74 | 0.89 | - | - |
9/9(12/12) | 0.30 | 0.86 | 0.54 | 0.35 | 0.76 | − 7.34 | − 2.81 | − 4.37 |
Table 6 Corresponding substitution and adsorption energies of the four metal oxide surfaces at different coverage levels
Cl coverage (ML) | Substitution energy (eV) | Vacancy formation energy (eV) | ||||||
---|---|---|---|---|---|---|---|---|
NiO | CoO | Cr2O3 | Fe2O3 | NiO | CoO | Cr2O3 | Fe2O3 | |
1/12 | - | - | − 0.03 | − 0.18 | - | - | 3.70 | − 0.85 |
1/9 | − 0.55 | − 1.05 | - | - | 4.41 | 3.70 | - | - |
3/9(4/12) | − 0.43 | − 0.51 | − 0.01 | − 0.18 | 4.19 | 4.04 | 3.17 | − 1.66 |
5/9 | 0.04 | − 0.17 | - | - | 3.13 | 1.42 | - | - |
8/12 | - | - | 0.30 | 0.31 | - | - | 0.01 | − 2.55 |
7/9 | 0.13 | − 0.02 | - | - | 2.74 | 0.89 | - | - |
9/9(12/12) | 0.30 | 0.86 | 0.54 | 0.35 | 0.76 | − 7.34 | − 2.81 | − 4.37 |
Fig. 8 Changes in substitution energy and vacancy formation energy with respect to Cl− coverage: a substitution energy plotted against Cl− coverage and b vacancy formation energy plotted against Cl− coverage
[1] | X.M. Zhang, Z.Y. Chen, H.F. Luo, T. Zhou, Y.L. Zhao, Z.C. Ling, Trans. Nonferrous Met. Soc. China 32, 377 (2022) |
[2] | Y. Wang, J.A. Wharton, R.A. Shenoi, Corros. Sci. 86, 42 (2014) |
[3] | B.G. Koushik, N. Van den Steen, M.H. Mamme, Y. Van Ingelgem, H. Terryn, J. Mater. Sci. Technol. 62, 254 (2021) |
[4] | M.H. Tsai, J.W. Yeh, Mater. Res. Lett. 2, 107 (2014) |
[5] |
Y. Ikeda, B. Grabowski, F. Kormann, Mater. Charact. 147, 464 (2019)
DOI |
[6] | W.K. Chai, T. Lu, Y. Pan, Intermetallics 116, 106654 (2020) |
[7] | H.C. Liu, C.W. Tsai, Intermetallics 132, 107167 (2021) |
[8] | X.W. Qiu, C.G. Liu, J. Alloys Compd. 553, 216 (2013) |
[9] | Y. Qiu, S. Thomas, D. Fabijanic, A.J. Barlow, H.L. Fraser, N. Birbilis, Mater. Des. 170, 107698 (2019) |
[10] | A.A. Rodriguez, J.H. Tylczak, M.C. Gao, P.D. Jablonski, M. Detrois, M. Ziomek-Moroz, J.A. Hawk, Adv. Mater. Sci. Eng. 2018, 3016304 (2018) |
[11] | X.L. Shang, Z.J. Wang, Q.F. Wu, J.C. Wang, J.J. Li, J.K. Yu, Acta Metall. Sin. -Engl. Lett. 32, 41 (2019) |
[12] | Y.Z. Shi, B. Yang, X. Xie, J. Brechtl, K.A. Dahmen, P.K. Liaw, Corros. Sci. 119, 33 (2017) |
[13] | W.R. Wang, W. Qi, L. Xie, X. Yang, J.T. Li, Y. Zhang, Materials 12, 694 (2019) |
[14] | R.F. Zhao, B. Ren, B. Cai, Z.X. Liu, G.P. Zhang, J.J. Zhang, Results Phys. 15, 102667 (2019) |
[15] | B.T. Tran, H.A. Pham, V.T. Nguyen, D.P. Doan, T.T.T. Hoang, N.X. Ho, D.V. Nguyen, T. Le Manh, J. Alloy. Compd. 973, 172860 (2024) |
[16] | Z. Wang, Z.X. Liu, J. Jin, D.Z. Tang, L. Zhang, Corros. Sci. 218, 111206 (2023) |
[17] | A. Tanji, R. Feng, Z. Lyu, R. Sakidja, P.K. Liaw, H. Hermawan, Corros. Sci. 210, 110828 (2023) |
[18] | H. Feng, H.B. Li, J. Dai, Y. Han, J.D. Qu, Z.H. Jiang, Y. Zhao, T. Zhang, Corros. Sci. 204, 110396 (2022) |
[19] | H. Feng, J. Dai, H.B. Li, X.Z. Cao, H.C. Zhu, S.C. Zhang, T. He, Z.H. Jiang, T. Zhang, Corros. Sci. 235, 112162 (2024) |
[20] | A. Veluchamy, D. Sherwood, B. Emmanuel, I.S. Cole, J. Electroanal. Chem. 785, 196 (2017) |
[21] | W.R. Wang, W.L. Wang, S.C. Wang, Y.C. Tsai, C.H. Lai, J.W. Yeh, Intermetallics 26, 44 (2012) |
[22] | M. Abdullah, M. Mukarram, T.B. Yaqub, F. Fernandes, K. Yaqoob, Int. J. Refract. Met. H. 115, 106300 (2023) |
[23] | A. Bouzoubaa, D. Costa, B. Diawara, N. Audiffren, P. Marcus, Corros. Sci. 52, 2643 (2010) |
[24] | A. Bouzoubaa, B. Diawara, V. Maurice, C. Minot, P. Marcus, Corros. Sci. 51, 941 (2009) |
[25] | M. Liu, Y. Jin, C. Leygraf, J. Pan, J. Electrochem. Soc. 166, 3124 (2019) |
[26] | K. Oware Sarfo, P. Murkute, O.B. Isgor, Y. Zhang, J. Tucker, L. Árnadóttir, J. Electrochem. Soc. 167, 121508 (2020) |
[27] |
Q. Pang, H. DorMohammadi, O.B. Isgor, L. Árnadóttir, Corros. Sci. 154, 61 (2019)
DOI |
[28] | X. Yin, H. Wang, E.-H. Han, J. Mater. Sci. Technol. 129, 70 (2022) |
[29] | G. Kresse, J. Non-Cryst, Solids 193, 222 (1995) |
[30] |
G. Kresse, J. Furthmuller, Phys. Rev. B 54, 11169 (1996)
DOI PMID |
[31] | G. Kresse, J. Furthmuller, Comp. Mater. Sci. 6, 15 (1996) |
[32] |
J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)
DOI PMID |
[33] | V.I. Anisimov, F. Aryasetiawan, A.I. Lichtenstein, J. Phys. Condens. Mater. 9, 767 (1997) |
[34] | S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton, Phys. Rev. B 57, 1505 (1998) |
[35] | A.I. Liechtenstein, V.I. Anisimov, J. Zaanen, Phys. Rev. B 52, 5476 (1995) |
[36] | B.S. Youmbi, F. Calvayrac, Surf. Sci. 621, 1 (2014) |
[37] | D.D. Macdonald, Electrochim. Acta 56, 1761 (2011) |
[38] | J. Soltis, Passivity breakdown. Corros. Sci. 90, 5 (2015) |
[39] | P. Varshney, R.S. Mishra, N. Kumar, J. Alloys Compd. 904, 164100 (2022) |
[1] | Nafiseh Mollaei, Seyed Mahmood Fatemi, Mohammad Reza Aboutalebi, Seyed Hossein Razavi, Wiktor Bednarczyk. Microstructure, Texture, Mechanical Properties, and Corrosion Behavior of Biodegradable Zn-0.2Mg Alloy Processed by Multi-Directional Forging [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 507-525. |
[2] | Jing Wang, Xuejian Wang, Zongning Chen, Huijun Kang, Tongmin Wang, Enyu Guo. In Vitro Corrosion Behavior and Mechanical Property of Novel Mg-Sn-In-Ga Alloys for Orthopedic Applications [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 353-366. |
[3] | Xiaoming Liu, Fengyang Quan, Yuan Gao, Shaodong Zhang, Jianbin Wang, Zhijun Wang, Junjie Li, Feng He, Jincheng Wang. Comparison of Hot Corrosion Behavior of Ni36Fe34Al17Cr10Mo1Ti2 and Ni34Co25Fe12Al15Cr12W2 Alloys in NaCl-KCl-Na2SO4 Salt [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(2): 205-217. |
[4] | Lingxiao Du, Hang Ding, Yun Xie, Li Ji, Wanbin Chen, Yunze Xu. Effect of Laser Energy Density on Microstructures and Properties of Additively Manufactured AlCoCrFeNi2.1 Eutectic High-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(2): 233-244. |
[5] | Zheng Liu, De-Chun Ren, Lian-Min Zhang, Ai-Li Ma, Hai-Bin Ji, Yu-Gui Zheng. Synergistic Improvement in Ductility and Hot Nitric Acid Corrosion Resistance of LPBF Ti-6Al-4V Alloy via Hot Isostatic Pressing [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(1): 102-106. |
[6] | Manzu Xu, Leipeng Xie, Shasha Yang, Chengguo Sui, Qunchang Wang, Qihua Long, Minghui Chen, Fuhui Wang. Heterostructured NiCrTi Alloy Prepared by Spark Plasma Sintering with Enhanced Mechanical Properties, Corrosion and Tribocorrosion Resistance [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(1): 164-176. |
[7] | Jin-Xiu Li, Jun-Xiu Chen, M. A. Siddiqui, S. K. Kolawole, Yang Yang, Ying Shen, Jian-Ping Yang, Jian-Hua Wang, Xu-Ping Su. Enhancing Corrosion Resistance and Antibacterial Properties of ZK60 Magnesium Alloy Using Micro-Arc Oxidation Coating Containing Nano-Zinc Oxide [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(1): 45-58. |
[8] | Li-Lan Gao, Jiang Ma, Yan-Song Tan, Xiao-Hao Sun, Qi-Jun Gao, De-Bao Liu, Chun-Qiu Zhang. Effect of Free-End Torsion on the Corrosion and Mechanical Properties for Mg-3Zn-0.2Ca Alloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(1): 59-70. |
[9] | Hongwei Yan, Yong’an Zhang, Wei Xiao, Boyu Xue, Rui Liu, Xiwu Li, Zhihui Li, Baiqing Xiong. Experimental and DFT Investigations of AlNbTiVZr High Entropy Alloys with Excellent Mechanical Properties [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(9): 1480-1490. |
[10] | Xue Han, Dan Zhang, Song Zhang, Mohammed R. I. Abueida, Lili Tan, Xiaopeng Lu, Qiang Wang, Huanye Liu. Fatigue and Corrosion Fatigue Properties of Mg-Zn-Zr-Nd Alloys in Glucose-Containing Simulated Body Fluids [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(9): 1533-1550. |
[11] | Xingpeng Liao, Jialuo Huang, Zhilin Liu, Jingru Guo, Dajiang Zheng, Pengbo Chen, Fuyong Cao. Degradation Behavior of Zn-Cu Stents with Different Coatings in Sodium Chloride Solution [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(9): 1564-1580. |
[12] | Ze-Song Wei, Zi-You Ding, Lei Cai, Shao-Xia Ma, Dong-Qing Zhao, Lan-Yue Cui, Cheng-Bao Liu, Yuan-Sheng Yang, Yuan-Ding Huang, Rong-Chang Zeng. Exfoliation Corrosion of As-Extruded Mg-1Li-1Ca: the Influence of the Superficial Layer [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(8): 1339-1353. |
[13] | Weidong Zhang, Yu Cui, Li Liu, Wenquan Wang, Wenzheng Chen, Rui Li, Fuhui Wang. Corrosion Behavior of Pre-oxidized GH4169 Alloy with Solid NaCl Deposited in a Wet Oxygen Flow at 600 °C [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(7): 1249-1264. |
[14] | Xiaoxue Wang, Jingjing Guo, Zihao Zeng, Peng Zhou, Rongqiao Wang, Xiuchun Liu, Kai Gao, Jingli Sun, Yong Yuan, Fuhui Wang. A Semi-Mechanistic Model for Predicting the Service Life of Composite Coatings on VW63Z Magnesium Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(7): 1161-1176. |
[15] | Ivana Cvijović-Alagić, Slađana Laketić, Miloš Momčilović, Jovan Ciganović, Jelena Bajat, Vesna Kojić. Impact of Microstructural and Surface Modifications on the Ti-45Nb Alloy’s Response to Bio-Environment [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(7): 1215-1230. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||