Acta Metallurgica Sinica (English Letters) ›› 2024, Vol. 37 ›› Issue (5): 921-938.DOI: 10.1007/s40195-024-01675-3
Xiang Kong1, Yu Wang1(), Hong Xu1, Haotian Fan1, Yuewu Zheng1, Beibei Xie1
Received:
2023-10-17
Revised:
2023-11-13
Accepted:
2023-12-13
Online:
2024-05-10
Published:
2024-06-14
Contact:
Yu Wang, wangyu@nuc.edu.cn
Xiang Kong, Yu Wang, Hong Xu, Haotian Fan, Yuewu Zheng, Beibei Xie. NbB2 Modified Al-Cu Alloys Fabricated by Freeze-Ablation Casting under High Cooling Rate Solidification[J]. Acta Metallurgica Sinica (English Letters), 2024, 37(5): 921-938.
Add to citation manager EndNote|Ris|BibTeX
Fig. 2 Rapid freezer (a: export of liquid nitrogen; b: frozen sand mold; c: temperature control panel; d: liquid nitrogen flow control valve; e: liquid nitrogen tank)
Fig. 3 A Ablation-vibration devices (a: frozen sand mold; b: water inlet pipe; c: movable guides; d: ablation coolant outlet; f: thermocouple temperature measurement location); B vibration device (a: frozen sand mold; b: mold fixed wall panel; c: clamp; d: vibration spring; e: motor)
Cu | Ti | Zr | Mn | Cd | V | Zn | B | Al |
---|---|---|---|---|---|---|---|---|
5 | 0.24 | 0.15 | 0.39 | 0.21 | 0.17 | 0.016 | 0.033 | Bal. |
Table 1 Al-Cu alloy chemical composition (wt%)
Cu | Ti | Zr | Mn | Cd | V | Zn | B | Al |
---|---|---|---|---|---|---|---|---|
5 | 0.24 | 0.15 | 0.39 | 0.21 | 0.17 | 0.016 | 0.033 | Bal. |
Fig. 7 a XRD pattern of Al-NbB2 intermetallic alloy; b metallographic micrograph of Al-NbB2 intermetallic alloy at VB; c XRD pattern, d SEM image and EDS results of extracted NbB2 powder
Fig. 11 TEM images of NbB2 particles in their standard morphology (taken from location W + VC). b Enlarged image of the red box in a; c-e EDS maps of a; f high-magnification image of the interface between the Al matrix and the NbB2 particles in region A; g localized enlarged photograph of region A in f; h FFT micrograph of the NbB2 particles; i SAED pattern of Al
Fig. 12 TEM images of NbB2 particles in aggregated morphology (from W + VA). a NbB2 particles in aggregated state; b enlarged image of the red box in a; c-e EDS maps of a; f high-magnification image of the interface between the Al matrix and the NbB2 particles in region A; g FFT micrograph of NbB2 particles; h localized magnified photograph of region A in f
Fig. 13 SEM images of cast sample W (+ 0.8 wt% VA/VB/VC). a SEM image at W + 0.8 wt% VA; b SEM image at W + 0.8 wt% VB; c SEM image at W + 0.8 wt% VC; d1, d2, and d3 EDS maps of d
Fig. 14 a Metallic fluidity test mold; b spiral fluidity casting samples; c plot of variation of Al-NbB2 intermediate alloy on Al-Cu alloy at different sites
Fig. 16 Morphologies of hot cracking test with the addition of NbB2 particles of different sizes and variation of HCS: a Al-Cu; b Al-Cu + VA; c Al-Cu + VB; d Al-Cu + VC; e chart of HCS changes
Directions (Al/NbB2) | <110>/<11 | <110>/<0001> | <110>/<1 | <110>/<10 |
---|---|---|---|---|
Xr (%) | 8.197 | 14.619 | 37.478 | 47.003 |
Directions (Al/NbB2) | <100>/<11 | <100>/<0001> | <100>/<1 | <100>/<10 |
Xr (%) | 22.976 | 17.182 | 11.581 | 25.051 |
Directions (Al/NbB2) | <112>/<11 | <112>/<0001> | <112>/<1 | <112>/<10 |
Xr (%) | 37.113 | 32.283 | 7.661 | 8.202 |
Table 2 Al/NbB2 interatomic spacing misfit Xr (%) based on E2EM
Directions (Al/NbB2) | <110>/<11 | <110>/<0001> | <110>/<1 | <110>/<10 |
---|---|---|---|---|
Xr (%) | 8.197 | 14.619 | 37.478 | 47.003 |
Directions (Al/NbB2) | <100>/<11 | <100>/<0001> | <100>/<1 | <100>/<10 |
Xr (%) | 22.976 | 17.182 | 11.581 | 25.051 |
Directions (Al/NbB2) | <112>/<11 | <112>/<0001> | <112>/<1 | <112>/<10 |
Xr (%) | 37.113 | 32.283 | 7.661 | 8.202 |
Directions (Al/NbB2) | {111}/{10 | {111}/{10 | {111}/{0001} | {111}/{11 |
---|---|---|---|---|
Xd (%) | 11.012 | 10.437 | 30.284 | 33.276 |
Directions (Al/NbB2) | {200}/{10 | {200}/{10 | {200}/{0001} | {200}/{11 |
Xd (%) | 3.765 | 25.056 | 39.641 | 22.932 |
Directions (Al/NbB2) | {220}/{10 | {220}/{10 | {220}/{0001} | {220}/{11 |
Xd (%) | 31.935 | 46.993 | 57.309 | 8.226 |
Table 3 Al/NbB2 interplanar spacing misfit Xd (%) based on E2EM
Directions (Al/NbB2) | {111}/{10 | {111}/{10 | {111}/{0001} | {111}/{11 |
---|---|---|---|---|
Xd (%) | 11.012 | 10.437 | 30.284 | 33.276 |
Directions (Al/NbB2) | {200}/{10 | {200}/{10 | {200}/{0001} | {200}/{11 |
Xd (%) | 3.765 | 25.056 | 39.641 | 22.932 |
Directions (Al/NbB2) | {220}/{10 | {220}/{10 | {220}/{0001} | {220}/{11 |
Xd (%) | 31.935 | 46.993 | 57.309 | 8.226 |
Fig. 19 Simulation results of effective stress in castings based on Procast software: a solidification time of the casting; b1-b2 distribution of the effective stress in the casting; c variation of the effective stress in the casting
[1] | Y. Zuo, H. Li, M. Xia, B. Jiang, G.M. Scamans, Z. Fan, Scr. Mater. 64, 209 (2011) |
[2] | T. Hirata, T. Kimura, T. Nakamoto, Mater. Sci. Eng. 772, 138713 (2020) |
[3] | S.J. Li, B.W. Wei, C. Yu, Y. Li, G.M. Xu, Y. Li, Mater. Res. Technol. 9, 3304 (2020) |
[4] | D.G. Eskin, R. Nadella, L. Katgerman, Acta Mater. 56, 1358 (2008) |
[5] | G.K. Sigworth, in ASM Handbook, Casting, vol. 15, (Metals Park, 2008), p. 255 |
[6] | A.R. Valizadeh, A.R. Kiani-Rashid, M.H. Avazkonandeh-Gharavol, E.Z. Karimi, Metallogr. Microstruct. Anal. 2, 107 (2013) |
[7] | G.F. Liang, Y. Ali, G.Q. You, M.X. Zhang,Materialia 3, 113 (2018) |
[8] | H. Mao, C. Li, Y. Dong, Yu. Wang, H. Xu, Q. Yu, Y. Shang, X. Li, Z. Zhao, J. Alloys Compd. 904, 163907 (2022) |
[9] | X. Kong, Y. Wang, H. Fan, J. Wu, H. Xu, J. Mater. Res. Technol. 25, 593 (2023) |
[10] | K. Iizumi, C. Sekiya, S. Okada, K. Kudou, T. Shishido, J. Eur. Ceram. Soc. 26, 635 (2006) |
[11] | A. Gupta, V. Singhal, O.P. Pandey, J. Alloys Compd. 736, 306 (2018) |
[12] | J. Ding, C. Cui, Y. Sun, J. Shi, S. Cui, Q. Ma, Mater. Sci. Eng. A 738, 273 (2018) |
[13] | W. Fan, Y. Bai, G. Zuo, H. Hao, Mater. Sci. Eng. A 854, 143808 (2022) |
[14] | N. Wu, F. Xue, H. Yang, G. Li, F. Luo, J. Ruan, Ceram. Int. 45, 1370 (2019) |
[15] | H. Demirtaş, E. Karakulak, H.B. Nadendla, Mater. Lett. 330, 133377 (2023) |
[16] | Z. Zhuo, H. Mao, H. Xu, Y. Fu, Appl. Surf. Sci. 456, 37 (2018) |
[17] | C. He, W. Yu, Y. Li, Z. Wang, D. Wu, G. Xu, Mater. Res. Express 7, 116501 (2020) |
[18] | S. Shao, Y. Liu, C.S. Xu, Y.X. Xu, B. Wu, X. Zeng, X. Lu, X. Yang, Acta Metall. Sin. -Engl. Lett. 28, 7 (2015) |
[19] | L. Ravkov, B. Diak, M. Gallerneault, P. Clark, G. Marzano, Can. Metall. Q. 60, 57 (2021) |
[20] | Z. Wang, X. Liu, Y. Liu, X. Bian, Trans. Nonferrous Metal. Soc. 13, 790 (2003) |
[21] | X. Liu, X. Bian, X. Qi, J. Ma, Trans. Nonferrous Metal. Soc. 9, 806 (1999) |
[22] | X. Peng, J. Li, S. Xie, G. Wei, Y. Yang, Rare Metal. Mat. Eng. 42, 2421 (2013) |
[23] | Z. Shan, Patternless Casting (China Machine Press, Beijing, 2017), p.19 |
[24] | V. Bohlooli, M.S. Mahalli, S.M.A. Boutorabi, Acta Metall. 26, 85 (2013) |
[25] | C. Moore, D. Beet, Foundry Trade J. 146, 1049 (1979) |
[26] | X. Duan, Hot Work. Technol. 6, 52 (1981) |
[27] | T.J. Chen, R.Q. Wang, Y. Ma, Y. Hao, Mater. Des. 34, 637 (2012) |
[28] | X.T. Liu, H. Hao, J. Alloys Compd. 623, 266 (2015) |
[29] | Y.F. Han, Y.B. Dai, J. Wang, D. Shu, B.D. Sun, Appl. Surf. Sci. 257, 7831 (2011) |
[30] | P. Vajeeston, P. Ravindran, C. Ravi, R. Asokamani, Phys. Rev. B 63, 045115 (2001) |
[31] | A. Elsayed, C. Ravindran, B.S. Murty, Int. J. Metalcast. 5, 29 (2011) |
[32] | M.X. Zhang, P.M. Kelly, M.A. Easton, J.A. Taylor, Acta Mater. 53, 1427 (2005) |
[33] | M.X. Zhang, P.M. Kelly, M. Qian, J.A. Taylor, Acta Mater. 53, 3261 (2005) |
[34] | L. Vegard,Physik 5, 17 (1921) |
[35] | D. Hardie, R.N. Parkins, Philos. Mag. 4, 815 (1959) |
[36] | PCPDFWIN V. 2.3; JCPDS (International Centre for Diffraction Data): Swarthmore, PA (2002) |
[37] | Y. Ali, G.Q. You, F.S. Pan, M.X. Zhang, Metall. Mater. Trans. 48, 474 (2017) |
[38] | J.N. Wang, K. Xie, Scr. Mater. 43, 441 (2000) |
[39] | S. Pang, G. Wu, W. Liu, L. Zhang, Y. Zhang, H. Conrad, W. Ding, Mater. Sci. Eng. A 562, 152 (2013) |
[40] | D.H. StJohn, M.A. Easton, M. Qian, J.A. Taylor, Metall. Mater. Trans. B 44, 2935 (2013) |
[41] | H. Li, K. Wang, G. Xu, H. Jiang, Q. Wang, Mater. Des. 196, 109146 (2020) |
[42] | H.R. Zhang, Z.B. Liu, Z.Z. Li, G.W. Li, H. Zhang, Acta Metall. Sin. -Engl. Lett. 29, 414 (2016) |
[43] | A.L. Greer, J. Chem. Phys. 145, 211704 (2016) |
[44] | F.R. Mollard, M.C. Flemings, E.F. Niyama,JOM 39, 34 (1987) |
[45] | A.K. Dahle, S. Karlsen, L. Arnberg, Int. J. Cast Met. Res. 9, 103 (1996) |
[46] | A.K. Dahle, P.A. Tøndel, C.J. Paradies, L. Arnberg, Metall. Mater. Trans. A 27, 2305 (1996) |
[47] | M.C. Flemings, Metall. Mater. Trans. B 5, 2121 ( 1974) |
[48] | D.G. Eskin, S.L. Katgerman, Prog. Mater. Sci. 49, 629 (2004) |
[49] | M. Su, X. Yuan, C. Yue, W. Zheng, Y. Wang, J. Kang, Acta Metall. Sin. -Engl. Lett. 36, 103 (2023) |
[50] | C. John, Castings (Butterworth-Heinemann, Oxford, 2003), p.247 |
[51] | J. Li, R. Chen, Y. Ma, W. Ke, Acta Metall. Sin. -Engl. Lett. 26, 728 (2013) |
[52] | S. Tian, H. Yang, G. Liu, T. Gao, J. Nie, Z. You, H. Wang,China Foundry 763, 138121 (2019) |
[1] | Peng Chen, Wenhao Chen, Jiaxin Chen, Zhiyu Chen, Yang Tang, Ge Liu, Bensheng Huang, Zhiqing Zhang. Microstructure Evolution and Mechanical Properties of Friction Stir Welded Al-Cu-Li Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(5): 855-871. |
[2] | Zhenghong Liu, Zhigang Wu, Ying Han, Xiaolei Song, Guoqing Zu, Weiwei Zhu, Xu Ran. Combination of High Yield Strength and Improved Ductility of 21Cr Lean Duplex Stainless Steel by Tailoring Cold Deformation and Low-Temperature Short-Term Aging [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(4): 695-702. |
[3] | Chuan Rong, Jieren Yang, Xiaoliang Zhao, Ke Huang, Ying Liu, Xiaohong Wang, Dongdong Zhu, Ruirun Chen. Microstructure Recrystallization and Mechanical Properties of a Cold-Rolled TiNbZrTaHf Refractory High-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(4): 633-647. |
[4] | Zhiyuan Liu, Li Jin, Jian Zeng, Fulin Wang, Fenghua Wang, Shuai Dong, Jie Dong. A Review on Particle Reinforced Mg Matrix Composites Fabricated by Powder Metallurgy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(3): 391-400. |
[5] | Jing-Peng Xiong, Yi-Qi Zeng, Jin-Long Liu, Wei-Cheng Wang, Lan Luo, Yong Liu. Interface Design Strategy for GNS/AZ91 Composites with Semi-Coherent Structure [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(3): 467-483. |
[6] | Lu Xiao, Ting-Ting Liu, Yue Chu, Bo Song, Jie Zhao, Xian-Hua Chen, Kai-Hong Zheng, Fu-Sheng Pan. Effect of Ti Particles on the Microstructure and Mechanical Properties of AZ91 Magnesium Matrix Composites [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(3): 513-524. |
[7] | Jin-Kai Zhang, Cui-Ju Wang, Yi-Dan Fan, Chao Xu, Kai-Bo Nie, Kun-Kun Deng. Effect of Tip Content on the Work Hardening and Softening Behavior of Mg-Zn-Ca Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(3): 551-560. |
[8] | Peitang Zhao, Xuejian Li, Hailong Shi, Xiaoshi Hu, Chunlei Zhang, Chao Xu, Xiaojun Wang. Fabrication, Microstructure and Mechanical Properties of in situ GNPs Reinforced Magnesium Matrix Composites [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(3): 561-569. |
[9] | Yan Wen, Xuan Sun, Jian Zhou, Bingliang Liu, Haojie Guo, Yuxin Li, Fei Yin, Liqiang Wang, Lechun Xie, Lin Hua. Influence of Electroshocking Treatment on Microstructure and Mechanical Properties of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si Thin-Wall Specimen Manufactured by Laser Melting Deposition [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 145-158. |
[10] | Huan Yang, Ying Liu, Jianbo Jin, Kunmao Li, Junjie Yang, Lingjian Meng, Chunbo Li, Wencai Zhang, Shengfeng Zhou. Effect of Heat Treatment on Microstructure and Mechanical Behavior of Cu-Bearing 316L Stainless Steel Produced by Selective Laser Melting [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 169-180. |
[11] | Xuan Luo, Chao Yang, Dongdong Li, Lai-Chang Zhang. Laser Powder Bed Fusion of Beta-Type Titanium Alloys for Biomedical Application: A Review [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 17-28. |
[12] | Xinxing Xiong, Sijie Yu, Pei Wang, Junfang Qi, Haichao Li, Xulei Wang, Michael Ryan, Debajyoti Bhaduri. Effect of TiB2 Addition on Microstructure and Mechanical Properties of AA8009 Alloy Fabricated by Laser Additive Manufacturing [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 67-77. |
[13] | Jia-Qi Zheng, Ming-Liang Wang, Wen-Na Jiao, Long-Jiang Zou, Yan Di. Effect of Ti Addition on Microstructure Evolution and Mechanical Properties of Al18Co13Cr10Fe14Ni45 Eutectic High-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(9): 1493-1501. |
[14] | Xiao-Yang Yi, Wei Liu, Yun-Fei Wang, Bo-Wen Huang, Xin-Jian Cao, Kui-Shan Sun, Xiao Liu, Xiang-Long Meng, Zhi-Yong Gao, Hai-Zhen Wang. Effect of Sn Content on the Microstructural Features, Martensitic Transformation and Mechanical Properties in Ti-V-Al-Based Shape Memory Alloys [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(8): 1247-1260. |
[15] | Ronghe Gao, Feng Li, Huaqiu Du, Pengda Huo. Dynamic Recrystallization Mechanism and Texture Evolution during Interactive Alternating Extruded Magnesium Alloy [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(8): 1292-1304. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||