Acta Metallurgica Sinica (English Letters) ›› 2021, Vol. 34 ›› Issue (10): 1361-1374.DOI: 10.1007/s40195-021-01276-4
Previous Articles Next Articles
Jie Wei1, Qudong Wang1(), Li Zhang1, Mahmoud Ebrahimi1, Haiyan Jiang1, Wenjiang Ding1
Received:
2021-03-18
Revised:
2021-04-27
Accepted:
2021-05-03
Online:
2021-07-13
Published:
2021-07-13
Contact:
Qudong Wang
About author:
Qudong Wang, wangqudong@sjtu.edu.cnJie Wei, Qudong Wang, Li Zhang, Mahmoud Ebrahimi, Haiyan Jiang, Wenjiang Ding. Effects of Gd Addition on the Microstructure and Tensile Properties of Mg-4Al-5RE Alloy Produced by Three Different Casting Methods[J]. Acta Metallurgica Sinica (English Letters), 2021, 34(10): 1361-1374.
Add to citation manager EndNote|Ris|BibTeX
Al | La | Ce | Mn | Gd | Mg | |
---|---|---|---|---|---|---|
Mg-4Al-5RE | 3.936 | 2.607 | 2.967 | 0.219 | - | Bal. |
Mg-4Al-5RE-0.7Gd | 3.745 | 2.311 | 2.707 | 0.225 | 0.667 | Bal. |
Table 1 Chemical composition of the studied alloys (wt%)
Al | La | Ce | Mn | Gd | Mg | |
---|---|---|---|---|---|---|
Mg-4Al-5RE | 3.936 | 2.607 | 2.967 | 0.219 | - | Bal. |
Mg-4Al-5RE-0.7Gd | 3.745 | 2.311 | 2.707 | 0.225 | 0.667 | Bal. |
Fig. 1 Determination of average cooling rate: a cooling curves of the Mg-4Al-5RE and Mg-4Al-5RE-0.7Gd alloys during the SC, PMC, and HPDC processes, b methodology to determine the critical solidification characteristics. Note that the data for SC and PMC processes were acquired by experiment method, while for the HPDC case, they were by simulation
SC | PMC | HPDC | |
---|---|---|---|
Mg-4Al-5RE | 1.50 | 7.39 | 102.4 |
Mg-4Al-5RE-0.7Gd | 0.95 | 7.04 | 101.2 |
Table 2 Average cooling rate (°C/s) of the studied alloys during the three casting processes
SC | PMC | HPDC | |
---|---|---|---|
Mg-4Al-5RE | 1.50 | 7.39 | 102.4 |
Mg-4Al-5RE-0.7Gd | 0.95 | 7.04 | 101.2 |
Fig. 2 Grain characteristics of a-c Mg-4Al-5RE and d-f Mg-4Al-5RE-0.7Gd alloys produced by a, d SC, b, e PMC, c, f HPDC methods. Note that OM was used to observe the grains for the SC and PMC alloys, while EBSD was used for the HPDC alloys due to the fine grains
Fig. 4 Optical images of a-c Mg-4Al-5RE and d-f Mg-4Al-5RE-0.7Gd alloys produced by a, d SC, b, e PMC, c, f HPDC methods. The insets are magnified images of the rectangle overlaid regions
Casting method | Area | Mg K | Al K | La L | Ce L | Gd L | Al/(La + Ce + Gd) | |
---|---|---|---|---|---|---|---|---|
Mg-4Al-5RE | SC | 1 | 0.231 | 0.606 | 0.052 | 0.111 | * | 3.715 |
2 | 0.104 | 0.602 | 0.080 | 0.214 | * | 2.043 | ||
PMC | 3 | 0.740 | 0.206 | 0.019 | 0.035 | * | 3.769 | |
4 | 0.563 | 0.296 | 0.038 | 0.103 | * | 2.099 | ||
HPDC | 5 | 0.702 | 0.236 | 0.026 | 0.036 | * | 3.806 | |
6 | 0.478 | 0.349 | 0.041 | 0.132 | * | 2.017 | ||
Mg-4Al-5RE-0.7Gd | SC | 7 | 0.198 | 0.631 | 0.045 | 0.115 | 0.011 | 3.690 |
8 | 0.497 | 0.332 | 0.028 | 0.11 | 0.033 | 1.942 | ||
PMC | 9 | 0.198 | 0.632 | 0.056 | 0.101 | 0.013 | 3.718 | |
10 | 0.197 | 0.531 | 0.022 | 0.094 | 0.156 | 1.952 | ||
HPDC | 11 | 0.465 | 0.421 | 0.029 | 0.055 | 0.03 | 3.693 | |
12 | 0.527 | 0.316 | 0.053 | 0.049 | 0.055 | 2.013 |
Table 3 EDS results of the areas indicated in Fig. 6 (at.%)
Casting method | Area | Mg K | Al K | La L | Ce L | Gd L | Al/(La + Ce + Gd) | |
---|---|---|---|---|---|---|---|---|
Mg-4Al-5RE | SC | 1 | 0.231 | 0.606 | 0.052 | 0.111 | * | 3.715 |
2 | 0.104 | 0.602 | 0.080 | 0.214 | * | 2.043 | ||
PMC | 3 | 0.740 | 0.206 | 0.019 | 0.035 | * | 3.769 | |
4 | 0.563 | 0.296 | 0.038 | 0.103 | * | 2.099 | ||
HPDC | 5 | 0.702 | 0.236 | 0.026 | 0.036 | * | 3.806 | |
6 | 0.478 | 0.349 | 0.041 | 0.132 | * | 2.017 | ||
Mg-4Al-5RE-0.7Gd | SC | 7 | 0.198 | 0.631 | 0.045 | 0.115 | 0.011 | 3.690 |
8 | 0.497 | 0.332 | 0.028 | 0.11 | 0.033 | 1.942 | ||
PMC | 9 | 0.198 | 0.632 | 0.056 | 0.101 | 0.013 | 3.718 | |
10 | 0.197 | 0.531 | 0.022 | 0.094 | 0.156 | 1.952 | ||
HPDC | 11 | 0.465 | 0.421 | 0.029 | 0.055 | 0.03 | 3.693 | |
12 | 0.527 | 0.316 | 0.053 | 0.049 | 0.055 | 2.013 |
Fig. 8 Identification of the ORs between Al2(Gd, RE) and Mg matrix: a bright-field TEM image of the PMC Mg-4Al-5RE-0.7Gd alloy, b selected area diffraction patterns taken at the interface
Fig. 11 Strain hardening rates of a Mg-4Al-5RE and Mg-4Al-5RE-0.7Gd alloys produced by three different casting methods, b enlarged stage III with the fitting curve. Note that the fitting curve is an average fitting result for all samples
Fig. 12 Schematic diagram representation regarding the effect of cooling rate and solute on the constitutional undercooling formation ahead of the solid/liquid interface
Shear modulus,$\mu$ | Poisson’s ratio,$v$ | |
---|---|---|
Mg | 17.2 | 0.35 |
Al11Ce3 | 47.2 | 0.21 |
Table 4 Mean value for the elastic constants of Mg [37, 38] and Al11Ce3 [39]
Shear modulus,$\mu$ | Poisson’s ratio,$v$ | |
---|---|---|
Mg | 17.2 | 0.35 |
Al11Ce3 | 47.2 | 0.21 |
Fig. 13 Contribution of different strengthening mechanisms to the 0.2% proof strength of a Mg-4Al-5RE, b Mg-4Al-5RE-0.7Gd alloys produced by three different casting methods
Fig. 15 SEM images of the longitudinal direction close to the fracture zone of a-c Mg-4Al-5RE and d-f Mg-4Al-5RE-0.7Gd alloys produced by a, d SC, b, e PMC, c, f HPDC methods
[1] |
A.A. Luo, Int. Mater. Rev. 49, 1 (2004)
DOI URL |
[2] | S. Ataya, N.A. Alsaleh, M.M. El-Sayed Seleman, Acta Metall. Sin. Engl. Lett. 32, 1 (2019) |
[3] | J. Zhang, P. Yu, K. Liu, D. Fang, D. Tang, J. Meng, Mater. Des. 30, 7 (2009) |
[4] | J. Zhang, K. Liu, D. Fang, X. Qiu, D. Tang, J. Meng, J. Mater. Sci. 44, 8 (2009) |
[5] |
J. Zhang, K. Liu, D. Fang, X. Qiu, P. Yu, D. Tang, J. Meng, J. Alloys Compd. 480, 2 (2009)
DOI URL |
[6] |
J. Zhang, J. Wang, X. Qiu, D. Zhang, Z. Tian, X. Niu, D. Tang, J. Meng, J. Alloys Compd. 464, 1 (2008)
DOI URL |
[7] | Q. Yang, K. Guan, X. Qiu, D. Zhang, S. Lv, F. Bu, Y. Zhang, X. Liu, J. Meng, Mater. Sci. Eng. A 675, 396 (2016) |
[8] | S. Lv, X. Lu, F. Meng, Q. Yang, X. Qiu, P. Qin, Q. Duan, J. Meng, Mater. Sci. Eng. A 773, 138725 (2019) |
[9] |
J. Wei, Q. Wang, L. Zhang, D. Yin, B. Ye, H. Jiang, W. Ding, Mater. Lett. 246, 125 (2019)
DOI URL |
[10] | Q. Yang, T. Zheng, D. Zhang, X. Liu, J. Fan, X. Qiu, X. Niu, J. Meng, J. Alloys Compd. 572, 12 (2013) |
[11] | Q. Yang, F. Bu, T. Zheng, F. Meng, X. Liu, D. Zhang, X. Qiu, J. Meng, Mater. Sci. Eng. A 619, 8 (2014) |
[12] |
Q. Yang, K. Guan, F. Bu, Y. Zhang, X. Qiu, T. Zheng, X. Liu, J. Meng, Mater. Charact. 113, 180 (2016)
DOI URL |
[13] | D. Qiu, M.X. Zhang, J.A. Taylor, P.M. Kelly, Acta Mater. 57, 10 (2009) |
[14] | J. Dai, M. Easton, S. Zhu, G. Wu, W. Ding, J. Mater. Res. 27, 21 (2012) |
[15] |
A.A. Luo, J. Magnes. Alloy. 1, 1 (2013)
DOI URL |
[16] | J. Bai, Y. Sun, F. Xue, J. Qiang, Mater. Sci. Eng. A 552, 472 (2012) |
[17] | Y. Ali, Y. Ali, G. You, G. You, F. Pan, F. Pan, M. Zhang, M. Zhang, Metall. Mater. Trans. A 48, 1 (2017) |
[18] |
G.Y. Yuan, Z.L. Liu, Q.D. Wang, W.J. Ding, Mater. Lett. 56, 1 (2002)
DOI URL |
[19] |
V.E. Bazhenov, Y.V. Tselovalnik, A.V. Koltygin, V.D. Belov, Int. J. Metalcast. 15, 2 (2021)
DOI URL |
[20] | G. Liu, G. Liu, Q. Wang, Q. Wang, L. Zhang, L. Zhang, B. Ye, B. Ye, H. Jiang, H. Jiang, W. Ding, W. Ding, Metall. Mater. Trans. A 50, 1 (2019) |
[21] | G. Timelli, G. Camicia, S. Ferraro, J. Mater. Eng. Perform. 23, 2 (2014) |
[22] |
R. Trivedi, W. Kurz, Int. Mater. Rev. 39, 2 (1994)
DOI URL |
[23] | W. Sun, X. Shi, E. Cinkilic, A.A. Luo, J. Mater. Sci. 51, 13 (2016) |
[24] | X. Li, S. Xiong, Z. Guo, Acta Metall. Sin. Engl. Lett. 29, 7 (2016) |
[25] | M.C. Flemings, in Encyclopedia of Materials: Science and Technology. ed. by K.H.J. Buschow, R.W. Cahn, M.C. Flemings, B. Ilschner, E.J. Kramer, S. Mahajan, P. Veyssiere (Elsevier, Oxford, 2001), pp. 8753-8755 |
[26] | D. Qiu, M. Zhang, P.M. Kelly, Scr. Mater. 61, 3 (2009) |
[27] | G. Liang, Y. Ali, G. You, M. Zhang, Materialia 3, 113 (2018) |
[28] | H.Q. Ang, T.B. Abbott, S. Zhu, M.A. Easton, Metall. Mater. Trans. A 50, 8 (2019) |
[29] | D.H. StJohn, M. Qian, M.A. Easton, P. Cao, Acta Mater. 59, 12 (2011) |
[30] |
Y. Ali, D. Qiu, B. Jiang, F. Pan, M. Zhang, J. Alloys Compd. 619, 639 (2015)
DOI URL |
[31] | M. Sun, D.H. StJohn, M.A. Easton, K. Wang, J. Ni, Metall. Mater. Trans. A 51, 1 (2020) |
[32] | K.V. Yang, C.H. Caceres, M.A. Easton, Metall. Mater. Trans. A 45, 9 (2014) |
[33] | R.L. Fleischer, Acta Metall. 11, 3 (1963) |
[34] | Y. Bai, W. Cheng, S. Ma, J. Zhang, C. Guo, Y. Zhang, Acta Metall. Sin. Engl. Lett. 31, 5 (2018) |
[35] |
I. Toda-Caraballo, E.I. Galindo-Nava, P.E.J. Rivera-Diaz-del-Castillo, Acta Mater. 75, 287 (2014)
DOI URL |
[36] | W. Fu, R. Wang, K. Wu, J. Kuang, J. Zhang, G. Liu, J. Sun, J. Mater. Sci. 54, 3 (2019) |
[37] | C.H. Caceres, C.J. Davidson, J.R. Griffiths, C.L. Newton, Mater. Sci. Eng. A 325, 1 (2002) |
[38] | C.H. Caceres, W.J. Poole, A.L. Bowles, C.J. Davidson, Mater. Sci. Eng. A 402, 1 (2005) |
[39] | W. Ding, J. Yi, P. Chen, D. Li, L. Peng, B. Tang, Solid State Sci. 14, 5 (2012) |
[1] | Jie Cui, Tianjiao Luo, Yingju Li, Xiaohui Feng, Qiuyan Huang, Yuansheng Yang. Fluidity, Microstructure, and Tensile Properties of Sub-rapidly Solidified Mg-6Al-4Zn-xSn (x = 0, 0.6, 1.2, 1.8) Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(9): 1265-1276. |
[2] | Yan Song, Hongxiang Jiang, Lili Zhang, Shixin Li, Jiuzhou Zhao, Jie He. A Model Describing Solidification Microstructure Evolution in an Inoculated Aluminum Alloys [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(6): 861-871. |
[3] | Baojie Wang, Daokui Xu, Tianyu Zhao, Liyuan Sheng. Effect of CaCl2 and NaHCO3 in Physiological Saline Solution on the Corrosion Behavior of an As-Extruded Mg-Zn-Y-Nd alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 239-247. |
[4] | Ce Zheng, Shuai-Feng Chen, Rui-Xue Wang, Shi-Hong Zhang, Ming Cheng. Effect of Hydrostatic Pressure on LPSO Kinking and Microstructure Evolution of Mg-11Gd-4Y-2Zn-0.5Zr Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 248-264. |
[5] | Guonan Ma, Dong Wang, Bolv Xiao, Zongyi Ma. Effect of Particle Size on Mechanical Properties and Fracture Behaviors of Age-Hardening SiC/Al-Zn-Mg-Cu Composites [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(10): 1447-1459. |
[6] | Chunliang Yang, Chuansong Wu, Junjie Zhao. Numerical Prediction of Intermetallic Compounds Thickness in Friction Stir Welding of Dissimilar Aluminum/Magnesium Alloys [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(10): 1375-1385. |
[7] | Ying-Ying Zuo, Hua Liu, Peng Gong, Shu-De Ji, Bao-Sheng Wu. Radial Additive Friction Stir Repairing of Mechanical Hole Out of Dimension Tolerance of AZ31 Magnesium Alloy Assisted by Stationary Shoulder: Process and Mechanical Properties [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(10): 1345-1360. |
[8] | Miao Wang, Xing-Wei Huang, Peng Xue, Chuan-Yong Cui, Qing-Chuan Zhang. Effect of Rotation Rate on Microstructure and Mechanical Properties of Friction Stir Processed Ni-Fe-Based Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(10): 1407-1420. |
[9] | Lin-Yue Jia, Wen-Bo Du, Jin-Long Fu, Zhao-Hui Wang, Ke Liu, Shu-Bo Li, Xian Du. Obtaining Ultra-High Strength and Ductility in a Mg-Gd-Er-Zn-Zr Alloy via Extrusion, Pre-deformation and Two-Stage Aging [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 39-44. |
[10] | Jiaqi Hu, Qite Li, Hong Gao. Influence of Twinning Texture on the Corrosion Fatigue Behavior of Extruded Magnesium Alloys [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 65-76. |
[11] | Meng Yan, Cong Wang, Tianjiao Luo, Yingju Li, Xiaohui Feng, Qiuyan Huang, Yuansheng Yang. Effect of Pulsed Magnetic Field on the Residual Stress of Rolled Magnium Alloy AZ31 Sheet [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 45-53. |
[12] | Zheng-Zheng Yin, Zhao-Qi Zhang, Xiu-Juan Tian, Zhen-Lin Wang, Rong-Chang Zeng. Corrosion Resistance and Durability of Superhydrophobic Coating on AZ31 Mg Alloy via One-Step Electrodeposition [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 25-38. |
[13] | Fenghua Wang, Peng Su, Linxin Qin, Shuai Dong, Yunliang Li, Jie Dong. Microstructure and Mechanical Properties of Mg-3Al-Zn Magnesium Alloy Sheet by Hot Shear Spinning [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1226-1234. |
[14] | Li-Sha Wang, Jing-Hua Jiang, Bassiouny Saleh, Qiu-Yuan Xie, Qiong Xu, Huan Liu, Ai-Bin Ma. Controlling Corrosion Resistance of a Biodegradable Mg-Y-Zn Alloy with LPSO Phases via Multi-pass ECAP Process [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1180-1190. |
[15] | Hao Wu, Si-Rui Huang, Cheng-Yan Zhu, Ji-Feng Zhang, He-Guo Zhu, Zong-Han Xie. In Situ TiC/FeCrNiCu High-Entropy Alloy Matrix Composites: Reaction Mechanism, Microstructure and Mechanical Properties [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1091-1102. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||