Acta Metallurgica Sinica (English Letters) ›› 2025, Vol. 38 ›› Issue (2): 205-217.DOI: 10.1007/s40195-024-01791-0
Previous Articles Next Articles
Xiaoming Liu1, Fengyang Quan2, Yuan Gao3, Shaodong Zhang3, Jianbin Wang1, Zhijun Wang1(), Junjie Li1, Feng He1, Jincheng Wang1
Received:
2024-06-12
Revised:
2024-09-02
Accepted:
2024-09-06
Online:
2025-02-10
Published:
2024-11-07
Contact:
Zhijun Wang, Xiaoming Liu, Fengyang Quan, Yuan Gao, Shaodong Zhang, Jianbin Wang, Zhijun Wang, Junjie Li, Feng He, Jincheng Wang. Comparison of Hot Corrosion Behavior of Ni36Fe34Al17Cr10Mo1Ti2 and Ni34Co25Fe12Al15Cr12W2 Alloys in NaCl-KCl-Na2SO4 Salt[J]. Acta Metallurgica Sinica (English Letters), 2025, 38(2): 205-217.
Add to citation manager EndNote|Ris|BibTeX
Samples | Elements (at.%) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Al | Cr | Fe | Co | Ni | Mo | W | Ti | Nb | |
HEA-1 | 16.9 | 10.2 | 33.3 | — | 36.1 | 1.6 | — | 1.9 | — |
HEA-2 | 15.2 | 12.1 | 11.4 | 25.1 | 34.1 | — | 2.1 | — | — |
Inconel 625 | — | 25.6 | 5.0 | — | 61.2 | 5.9 | — | — | 2.3 |
Table 1 Main compositions of the HEA-1, HEA-2 and Inconel 625 alloys
Samples | Elements (at.%) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Al | Cr | Fe | Co | Ni | Mo | W | Ti | Nb | |
HEA-1 | 16.9 | 10.2 | 33.3 | — | 36.1 | 1.6 | — | 1.9 | — |
HEA-2 | 15.2 | 12.1 | 11.4 | 25.1 | 34.1 | — | 2.1 | — | — |
Inconel 625 | — | 25.6 | 5.0 | — | 61.2 | 5.9 | — | — | 2.3 |
Specimen | NaCl:KCl:Na2SO4 (wt%) | Surface area (cm−2) | Mass change (g) |
---|---|---|---|
HEA-1-S1 | 5:5:1 | 22.86 | 1.5667 |
HEA-1-S2 | 5:5:2 | 21.66 | 1.6191 |
HEA-2-S1 | 5:5:1 | 26.63 | 0.9868 |
HEA-2-S2 | 5:5:2 | 27.19 | 0.7288 |
Inconel 625-S1 | 5:5:1 | 12.69 | 0.2089 |
Inconel 625-S2 | 5:5:2 | 13.98 | 0.6536 |
Table 2 Detailed experimental method of HEA-1, HEA-2 and Inconel 625 alloys exposed to the NaCl-KCl-Na2SO4 salt at 650 °C for 168 h
Specimen | NaCl:KCl:Na2SO4 (wt%) | Surface area (cm−2) | Mass change (g) |
---|---|---|---|
HEA-1-S1 | 5:5:1 | 22.86 | 1.5667 |
HEA-1-S2 | 5:5:2 | 21.66 | 1.6191 |
HEA-2-S1 | 5:5:1 | 26.63 | 0.9868 |
HEA-2-S2 | 5:5:2 | 27.19 | 0.7288 |
Inconel 625-S1 | 5:5:1 | 12.69 | 0.2089 |
Inconel 625-S2 | 5:5:2 | 13.98 | 0.6536 |
Fig. 2 Microstructures of a HEA-1 and b HEA-2 before corrosion test and corresponding element distribution charactered by SEM. The scale bar in the inset was 2 μm
Fig. 3 a SEM micrographs and corresponding element distribution of the HEA-1-S1 alloy at the interface of the oxides scale and alloy matrix, b high-magnification SEM micrographs of the oxides scale and c high-magnification SEM micrographs of the alloy matrix. The element distribution corresponded to the position indicated by the purple line
Fig. 4 a SEM micrographs and corresponding element distribution of the HEA-2-S1 alloy at the interface of the oxides scale and alloy matrix, b high-magnification SEM micrographs of the alloy matrix and c high-magnification SEM micrographs of the oxides scale. The element distribution corresponded to the position indicated by the purple line
Fig. 5 a SEM micrographs and corresponding element distribution of the HEA-1-S2 alloy at the interface of the oxides scale and alloy matrix, b high-magnification SEM micrographs of the alloy matrix and c high-magnification SEM micrographs of the oxides scale. The element distribution corresponded to the position indicated by the purple line
Fig. 6 a SEM micrographs and corresponding element distribution of the HEA-2-S2 alloy at the interface of the oxides scale and alloy matrix, b high-magnification SEM micrographs of the alloy matrix and c high-magnification SEM micrographs of the oxides scale. The element distribution corresponded to the position indicated by the purple line
Fig. 7 XRD pattern of HEA-1 (blue line) and HEA-2 (red line) after hot corrosion in NaCl-KCl-Na2SO4 with ratio 5:5:1 (light color) and 5:5:1 (heavy color)
Alloy | Temperature (°C) | Salt | Time (h) | Mass change (mg·cm−2) | Reference |
---|---|---|---|---|---|
AlCoCrFeNi2.1 | 450 | NaCl-KCl-MgCl2 | 24 | 19 | [ |
AlCoCrFeNi2.1 | 650 | NaCl-KCl-MgCl2 | 24 | 38 | [ |
Ni-20Cr-0Si | 600 | NaCl-KCl-Na2SO4-K2SO4 | 144 | 97.95 | [ |
Ni-20Cr-1Si | 600 | NaCl-KCl-Na2SO4-K2SO4 | 144 | 59.81 | [ |
Ni-20Cr-3Si | 600 | NaCl-KCl-Na2SO4-K2SO4 | 144 | 65.91 | [ |
Ni-20Cr-5Si | 600 | NaCl-KCl-Na2SO4-K2SO4 | 144 | 73.65 | [ |
Ni34Co25Fe12Al15Cr12W2 | 650 | NaCl: KCl: Na2SO4 | 168 | 27 | This work |
625-2 | 700 | NaCl-KCl-K2SO4 | 120 | 34.903 | [ |
NiCrMoAl-2 | 700 | NaCl-KCl-K2SO4 | 120 | 55.812 | [ |
CrMnFeCoNi | 800 | Na2SO4 + NaCl | 80 | 60 | [ |
Fe2CoCrNi0.5 | 850 | NaCl | 480 | 101.7 | [ |
Fe2CoCrNi0.5Si0.25 | 850 | NaCl | 480 | 44.5 | [ |
Fe2CoCrNi0.5Cu0.25 | 850 | NaCl | 480 | 138.3 | [ |
Fe2CoCrNi0.5Si0.25Cu0.25 | 850 | NaCl | 480 | 78.3 | [ |
Al0.7CoCrFeNi | 900 | Na2SO4 + 25% NaCl | 140 | 92 | [ |
Al1.0CoCrFeNi | 900 | Na2SO4 + 25% NaCl | 160 | 50 | [ |
Al1.3CoCrFeNi | 900 | Na2SO4 + 25% NaCl | 160 | 44 | [ |
NiCoCrAl | 900 | Na2SO4 + 25% NaCl | 160 | 55 | [ |
NbTaTiV | 900 | Na2SO4 + 25% NaCl | 100 | 287.5 | [ |
Table 3 Corrosion performance of difference alloys after hot corrosion comparison
Alloy | Temperature (°C) | Salt | Time (h) | Mass change (mg·cm−2) | Reference |
---|---|---|---|---|---|
AlCoCrFeNi2.1 | 450 | NaCl-KCl-MgCl2 | 24 | 19 | [ |
AlCoCrFeNi2.1 | 650 | NaCl-KCl-MgCl2 | 24 | 38 | [ |
Ni-20Cr-0Si | 600 | NaCl-KCl-Na2SO4-K2SO4 | 144 | 97.95 | [ |
Ni-20Cr-1Si | 600 | NaCl-KCl-Na2SO4-K2SO4 | 144 | 59.81 | [ |
Ni-20Cr-3Si | 600 | NaCl-KCl-Na2SO4-K2SO4 | 144 | 65.91 | [ |
Ni-20Cr-5Si | 600 | NaCl-KCl-Na2SO4-K2SO4 | 144 | 73.65 | [ |
Ni34Co25Fe12Al15Cr12W2 | 650 | NaCl: KCl: Na2SO4 | 168 | 27 | This work |
625-2 | 700 | NaCl-KCl-K2SO4 | 120 | 34.903 | [ |
NiCrMoAl-2 | 700 | NaCl-KCl-K2SO4 | 120 | 55.812 | [ |
CrMnFeCoNi | 800 | Na2SO4 + NaCl | 80 | 60 | [ |
Fe2CoCrNi0.5 | 850 | NaCl | 480 | 101.7 | [ |
Fe2CoCrNi0.5Si0.25 | 850 | NaCl | 480 | 44.5 | [ |
Fe2CoCrNi0.5Cu0.25 | 850 | NaCl | 480 | 138.3 | [ |
Fe2CoCrNi0.5Si0.25Cu0.25 | 850 | NaCl | 480 | 78.3 | [ |
Al0.7CoCrFeNi | 900 | Na2SO4 + 25% NaCl | 140 | 92 | [ |
Al1.0CoCrFeNi | 900 | Na2SO4 + 25% NaCl | 160 | 50 | [ |
Al1.3CoCrFeNi | 900 | Na2SO4 + 25% NaCl | 160 | 44 | [ |
NiCoCrAl | 900 | Na2SO4 + 25% NaCl | 160 | 55 | [ |
NbTaTiV | 900 | Na2SO4 + 25% NaCl | 100 | 287.5 | [ |
Fig. 11 Measured corrosion depth of HEA-1, HEA-2 and Inconel 625 after exposure to different salt. The corrosion depth was measured only below the alloy matrix, which eliminated the interference of oxide layer
Reaction | ΔG (kJ/mol) |
---|---|
Ti + 2Cl2(g) = TiCl4 | − 588.11 |
Al + 1.5Cl2(g) = AlCl3 | − 518.47 |
Nb + 2.5Cl2(g) = NbCl5 | − 501.24 |
Cr + 1.5Cl2(g) = CrCl3 | − 360.98 |
Cr + Cl2(g) = CrCl2 | − 281.46 |
Fe + 1.5Cl2(g) = FeCl3 | − 234.59 |
Co + Cl2(g) = CoCl2 | − 187.59 |
Ni + Cl2(g) = NiCl2 | − 166.81 |
Mo + Cl2(g) = MoCl2 | − 150.86 |
W + Cl2(g) = WCl2 | − 150.45 |
Table 4 Standard Gibbs free energy of corresponding chloride formation at 650 °C
Reaction | ΔG (kJ/mol) |
---|---|
Ti + 2Cl2(g) = TiCl4 | − 588.11 |
Al + 1.5Cl2(g) = AlCl3 | − 518.47 |
Nb + 2.5Cl2(g) = NbCl5 | − 501.24 |
Cr + 1.5Cl2(g) = CrCl3 | − 360.98 |
Cr + Cl2(g) = CrCl2 | − 281.46 |
Fe + 1.5Cl2(g) = FeCl3 | − 234.59 |
Co + Cl2(g) = CoCl2 | − 187.59 |
Ni + Cl2(g) = NiCl2 | − 166.81 |
Mo + Cl2(g) = MoCl2 | − 150.86 |
W + Cl2(g) = WCl2 | − 150.45 |
Fig. 12 Optical images of the a HEA-1-S1, b HEA-1-S2, c HEA-2-S1, d HEA-2-S2, e Inconel 625-S1, f Inconel 625-S2 alloys after exposure to the NaCl-KCl-Na2SO4 salt at 650 °C for 168 h
Specimen | Phase volume fraction (%) | |
---|---|---|
FCC | B2 | |
HEA-1 | 48.93 | 51.07 |
HEA-2 | 88.24 | 11.76 |
Inconel 625 | ~ 100 | — |
Table 5 Phase volume fraction of the HEA-1, HEA-2 and Inconel 625 alloys
Specimen | Phase volume fraction (%) | |
---|---|---|
FCC | B2 | |
HEA-1 | 48.93 | 51.07 |
HEA-2 | 88.24 | 11.76 |
Inconel 625 | ~ 100 | — |
[1] | X. Wang, Z. Liu, K. Cheng, Y. Shen, J. Li, Corros. Sci. 221, 111308 (2023) |
[2] | J.H. Wang, D.G. Li, T.M. Shao, Corros. Sci. 200, 110247 (2022) |
[3] | G. Wang, H. Liu, T. Chen, X. Zhang, H. Li, Y. Yu, H. Yao, Corros. Sci. 189, 109592 (2021) |
[4] | M. Li, H. Henein, C. Zhou, J. Liu, J. Mater. Sci. Technol. 174, 133 (2024) |
[5] | P. Pan, T. Li, Y. Wang, N. Zhang, H. Chen, Corros. Sci. 203, 110350 (2022) |
[6] | R.C. Reed (ed.), The superalloys: fundamentals and applications (Cambridge University Press, Cambridge, 2008) |
[7] | G. Han, W. Cho, Oxid. Met. 58, 391 (2002) |
[8] | I. Kim, W. Cho, Mater. Sci. Eng. A 264, 269 (1999) |
[9] | X. Liu, J. Wang, X. Shi, Y. Jia, L. Liu, J. Li, F. He, Z. Wang, J. Wang, J. Alloys Compd. 963, 171164 (2023) |
[10] | J. Wang, H. Jiang, W. Xie, X. Kong, S. Qin, H. Yao, Y. Li, Corros. Sci. 229, 111879 (2024) |
[11] | H. Jiang, Z. Ni, J. Wang, D. Qiao, Y. Lv, G. Zhang, L. Liu, Mater. Charact. 201, 112952 (2023) |
[12] | M. Li, H. Zhang, Y. Zeng, J. Liu, Acta Mater. 240, 118313 (2022) |
[13] | K. Patel, V. Hasannaeimi, M. Sadeghilaridjani, S. Muskeri, C. Mahajan, S. Mukherjee, Entropy 25, 296 (2023) |
[14] | P. Cui, Z. Bao, Y. Liu, F. Zhou, Z. Lai, Y. Zhou, J. Zhu, Corros. Sci. 201, 110276 (2022) |
[15] | J. Wang, H. Jiang, X. Chang, L. Zhang, H. Wang, L. Zhu, S. Qin, Corros. Sci. 221, 111313 (2023) |
[16] | L. Li, J. Lu, X. Liu, T. Dong, X. Zhao, F. Yang, F. Guo, Corros. Sci. 187, 109479 (2021) |
[17] | S. Chen, Z. Liu, F. Liu, Coatings 13, 1320 (2023) |
[18] | H. He, Z. Liu, W. Wang, C. Zhou, Corros. Sci. 100, 466 (2015) |
[19] | X. Li, J. Zou, Q. Shi, M. Dai, H. Yang, Y. Liu, H. Yun, Surf. Coat. Technol. 433, 128119 (2022) |
[20] | P. Wang, Y. Wang, F. Cui, X. Yang, A. Pan, W. Wu, J. Alloys Compd. 918, 165602 (2022) |
[21] | Q. Cheng, Y. Zhang, X.D. Xu, D. Wu, S. Guo, T.G. Nieh, J.H. Chen, Acta Mater. 252, 118905 (2023) |
[22] | J. Wang, Q. Wu, Y. Li, Z. Wang, J. Li, J. Wang, J. Alloys Compd. 916, 165382 (2022) |
[23] | Y. Jia, Z. Wang, Q. Wu, Y. Wei, X. Bai, L. Liu, J. Wang, X. Liu, L. Wang, F. He, J. Li, J. Wang, Acta Mater. 262, 119427 (2024) |
[24] | Q. Wu, Z. Wang, F. He, Z. Yang, J. Li, J. Wang, J. Mater. Sci. Technol. 128, 71 (2022) |
[25] |
N. Radhika, N. Noble, A.A. Adediran, Sci. Rep. 14, 5652 (2024)
DOI PMID |
[26] | Y. Garip, Corros. Sci. 206, 110497 (2022) |
[27] | Y. Gao, K. Chong, C. Liu, Y. Cao, D. Wu, Y. Zou, J. Mater. Sci. Technol. 28, 216 (2024) |
[28] | Z. Tong, W. Wan, W. Zhou, Y. Ye, J. Jiao, X. Ren, Intermetallics 151, 107710 (2022) |
[29] | Y. Zhang, H. Jiang, S. Zhang, Z. Yang, T. Zhang, S. Tian, J. Mater. Sci. Technol. 26, 4887 (2023) |
[30] | J. Goebel, F. Pettit, G. Goward, Metall. Trans. 4, 261 (1973) |
[31] | J. Cai, C. Gao, P. Lv, C. Zhang, Q. Guan, J. Lu, X. Xu, J. Alloys Compd. 784, 1221 (2019) |
[32] | B.P. Mohanty, D.A. Shores, Corros. Sci. 46, 2893 (2004) |
[33] | J. Eklund, A. Persdotter, V. Ssenteza, T. Jonsson, Corros. Sci. 217, 111155 (2023) |
[34] | D. Fantozzi, V. Matikainen, M. Uusitalo, H. Koivuluoto, P. Vuoristo, Surf. Coat. Technol. 318, 233 (2017) |
[35] | R. Jafari, E. Sadeghi, Corros. Sci. 160, 108066 (2019) |
[36] | E. Sadeghimeresht, L. Reddy, T. Hussain, N. Markocsan, S. Joshi, Corros. Sci. 132, 170 (2018) |
[37] | S.K. Gill, J. Sure, Y. Wang, B. Layne, L. He, S. Mahurin, J.F. Wishart, K. Sasaki, Corros. Sci. 179, 109105 (2021) |
[38] | T. Meißner, X. Montero, D. Fähsing, M. Galetz, Corros. Sci. 164, 108343 (2020) |
[39] | A. Palacios, M.E. Navarro, Z. Jiang, A. Avila, G. Qiao, E. Mura, Y. Ding, Sol.Energy 201, 437 (2020) |
[40] | Xu. Zhang, J. Wan, L. Zhu, H. Zhou, Y. Yang, Met. Mater. Int. 29, 3645 (2023) |
[41] | T.A. Badea, D. Batalu, N. Constantin, A. Paraschiv, D. Pătroi, L.C. Ceatra, Materials 15, 4082 (2022) |
[42] | J. Wang, D. Li, T. Shao, Surf. Coat. Technol. 440, 128503 (2022) |
[43] | P. Zhang, X.H. Li, J. Moverare, R.L. Peng, J. Alloys Compd. 815, 152381 (2020) |
[44] | J.S. Meng, M.X. Chen, X.P. Shi, M. Qiang, Trans. Nonferrous Met. Soc. China 31, 2402 (2021) |
[45] | M. Srivastava, J.N. Balaraju, B. Ravisankar, C. Anandan, V.W. Grips, Appl. Surf. Sci. 263, 597 (2012) |
[46] | Q. Fan, S. Jiang, D. Wu, J. Gong, C. Sun, Corros. Sci. 76, 373 (2013) |
[47] | M. Qiao, C. Zhou, Corros. Sci. 63, 239 (2012) |
[48] | Q. Fan, S. Jiang, H. Yu, J. Gong, C. Sun, Appl. Surf. Sci. 311, 214 (2014) |
[49] | D. Seo, K. Ogawa, Y. Suzuki, K. Ichimura, T. Shoji, S. Murata, Appl. Surf. Sci. 255, 2581 (2008) |
[50] | V. Hasannaeimi, A.V. Ayyagari, S. Muskeri, R. Salloom, S. Mukherjee, N.P.J. Mater. Degrad. 3, 16 (2019) |
[51] | C. Örnek, D.L. Engelberg, Corros. Sci. 99, 164 (2015) |
[52] | C. Örnek, A.H. Ahmed, D.L. Engelberg, Effect of Microstructure On Atmospheric-Induced Corrosion Of Heat-Treated Grade 2205 and 2507 Duplex Stainless Steels. Eurocorr 2012. Dechema, Istanbul, Turkey, 2012. pp. 1-10. https://doi.org/10.13140/RG.2.1.3765.3607 |
[53] | P. Reccagni, L. Guilherme, Q. Lu, M. Gittos, D.L. Engelberg, Corros. Sci. 161, 108198 (2019) |
[54] | D.L. Engelberg, C. Örnek, Corros. Eng. Sci. Technol. 49, 535 (2014) |
[55] | Y. Jing, X. Cui, D. Liu, Y. Fang, Z. Chen, A. Liu, X. Wang, G. Jin, Surf. Interfaces 33, 102305 (2022) |
[56] | K. Sridharan, T. Allen, Molten Salts Chem. (2013). https://doi.org/10.1016/B978-0-12-398538-5.00012-3 |
[1] | Jin-Xiu Li, Jun-Xiu Chen, M. A. Siddiqui, S. K. Kolawole, Yang Yang, Ying Shen, Jian-Ping Yang, Jian-Hua Wang, Xu-Ping Su. Enhancing Corrosion Resistance and Antibacterial Properties of ZK60 Magnesium Alloy Using Micro-Arc Oxidation Coating Containing Nano-Zinc Oxide [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(1): 45-58. |
[2] | Xingpeng Liao, Jialuo Huang, Zhilin Liu, Jingru Guo, Dajiang Zheng, Pengbo Chen, Fuyong Cao. Degradation Behavior of Zn-Cu Stents with Different Coatings in Sodium Chloride Solution [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(9): 1564-1580. |
[3] | You Lv, Yupeng Zhang, Xi Liu, Zehua Dong, Xiaorong Zhou, Xinxin Zhang. Effect of Mn Addition and Heat Treatment on the Corrosion Behaviour of Mg-Ag-Mn Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(4): 665-677. |
[4] | Jingjing Peng, Jing Liu, Shen Zhang, Zhihui Wang, Xian Zhang, Kaiming Wu. Effects of Environmental Factors on Corrosion Behavior of E690 Steel in Simulated Marine Environment [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(4): 678-694. |
[5] | Jinchao Jiao, Jin Zhang, Yong Lian, Shengli Han, Kaihong Zheng, Fusheng Pan. Influence of Micro/Nano-Ti Particles on the Corrosion Behavior of AZ31-Ti Composites [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(3): 484-498. |
[6] | Haijun Wang, Renju Cheng, Xianhua Chen, Mingbo Yang, Daiyi Deng, Lirui Liu, Yongfeng Zhou, Yanlong Ma, Kaihong Zheng, Fusheng Pan. Interfacial Reaction of Ti6Al4V Lattice Structure-Reinforced VW92 Alloy Matrix Composites [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(3): 570-576. |
[7] | Ying Shen, Xianfeng Shan, Iniobong P. Etim, Muhammad Ali Siddiqui, Yang Yang, Zewen Shi, Xuping Su, Junxiu Chen. Comparative Study of the Effects of Nano ZnO and CuO on the Biodegradation, Biocompatibility, and Antibacterial Properties of Micro-arc Oxidation Coating of Magnesium Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(2): 242-254. |
[8] | Gang Niu, Rui Yuan, R. D. K. Misra, Na Gong, Zhi-Hui Zhang, Hao-Xiu Chen, Hui-Bin Wu, Cheng-Jia Shang, Xin-Ping Mao. Effect of La on the Corrosion Behavior and Mechanism of 3Ni Weathering Steel in a Simulated Marine Atmospheric Environment [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(2): 308-324. |
[9] | Yanwei Zeng, Peng Xu, Guoqiang Liu, Tianguan Wang, Bing Lei, Zhiyuan Feng, Ping Zhang, Guozhe Meng. ZIF-8 Modified Ce-Sol-gel Film on Rebar for Enhancing Corrosion Resistance [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(12): 2121-2135. |
[10] | Zhibin Liu, Guangya Zhu, Wenkai Li, Di Mei, Peihua Du, Yufeng Sun, Shijie Zhu, Shaokang Guan. Effect of Rolling Temperature on the Mechanical Properties and Corrosion Behavior of Mg-Zn-Y-Nd Alloy Thin Sheets [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(10): 1721-1734. |
[11] | Yu-Hang Chu, Liang-Yu Chen, Bo-Yuan Qin, Wenbin Gao, Fanmin Shang, Hong-Yu Yang, Lina Zhang, Peng Qin, Lai-Chang Zhang. Unveiling the Contribution of Lactic Acid to the Passivation Behavior of Ti-6Al-4V Fabricated by Laser Powder Bed Fusion in Hank’s Solution [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 102-118. |
[12] | W.L. Zhang, W. Li, L.B. Fu, X. Peng, J. Sun, S.M. Jiang, J. Gong, C. Sun. Hot Corrosion Behavior of Hf-Doped NiAl Coating in the Mixed Salt of Na2SO4 + K2SO4 at 900 °C [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(9): 1409-1420. |
[13] | Kai Hu, Lei Zhang, Yuanjie Zhang, Bo Song, Shifeng Wen, Qi Liu, Yusheng Shi. Electrochemical Corrosion Behavior and Mechanical Response of Selective Laser Melted Porous Metallic Biomaterials [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(8): 1235-1246. |
[14] | Xian Zhang, Li Gong, Yanpeng Feng, Zhihui Wang, Miao Yang, Lin Cheng, Jing Liu, Kaiming Wu. Effect of Retained Austenite on Corrosion Behavior of Ultrafine Bainitic Steel in Marine Environment [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(5): 717-731. |
[15] | Jing Li, Xiaochen Zhang, Haibin Ma, Liangyin Xiong, Shi Liu, Qisen Ren, Zhengzheng Pang. Effect of Silicon and Aluminum Addition on Corrosion Behavior of ODS Iron-Based Alloys in Liquid Lead-Bismuth Eutectic [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(5): 732-744. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||