Acta Metallurgica Sinica (English Letters) ›› 2025, Vol. 38 ›› Issue (1): 45-58.DOI: 10.1007/s40195-024-01770-5
Previous Articles Next Articles
Jin-Xiu Li1, Jun-Xiu Chen1,2,3(), M. A. Siddiqui4, S. K. Kolawole5, Yang Yang1, Ying Shen1, Jian-Ping Yang6, Jian-Hua Wang1, Xu-Ping Su1(
)
Received:
2024-05-15
Revised:
2024-06-06
Accepted:
2024-06-11
Online:
2025-01-10
Published:
2024-09-15
Contact:
Jun-Xiu Chen, jxchen_2019@163.com; Xu-Ping Su, sxping@cczu.edu.cn
Jin-Xiu Li, Jun-Xiu Chen, M. A. Siddiqui, S. K. Kolawole, Yang Yang, Ying Shen, Jian-Ping Yang, Jian-Hua Wang, Xu-Ping Su. Enhancing Corrosion Resistance and Antibacterial Properties of ZK60 Magnesium Alloy Using Micro-Arc Oxidation Coating Containing Nano-Zinc Oxide[J]. Acta Metallurgica Sinica (English Letters), 2025, 38(1): 45-58.
Add to citation manager EndNote|Ris|BibTeX
Samples | KOH | Na2SiO3·9H2O | KF·2H2O | Nano-ZnO |
---|---|---|---|---|
MAO | 1 | 10 | 8 | - |
ZnO + MAO | 1 | 10 | 8 | 2/5/8 |
Table 1 Composition of the electrolyte (g/L)
Samples | KOH | Na2SiO3·9H2O | KF·2H2O | Nano-ZnO |
---|---|---|---|---|
MAO | 1 | 10 | 8 | - |
ZnO + MAO | 1 | 10 | 8 | 2/5/8 |
Composition | NaCl | KCl | KH2PO4 | MgSO4·7H2O | NaHCO3 | CaCl2 | Na2HPO4 | C6H12O6 |
---|---|---|---|---|---|---|---|---|
Content | 8.00 | 0.40 | 0.06 | 0.20 | 0.35 | 0.14 | 0.13 | 1.00 |
Table 2 Composition of the Hank's solution (g/L)
Composition | NaCl | KCl | KH2PO4 | MgSO4·7H2O | NaHCO3 | CaCl2 | Na2HPO4 | C6H12O6 |
---|---|---|---|---|---|---|---|---|
Content | 8.00 | 0.40 | 0.06 | 0.20 | 0.35 | 0.14 | 0.13 | 1.00 |
Samples | Elemental composition (at.%) | ||||
---|---|---|---|---|---|
O | F | Mg | Si | Zn | |
Z0 | 48.5 | 8.2 | 31.7 | 11.0 | 0.7 |
Z2 | 50.8 | 6.3 | 32.2 | 9.7 | 0.9 |
Z5 | 46.8 | 9.2 | 30.9 | 9.7 | 3.5 |
Z8 | 49.6 | 8.3 | 31.5 | 9.4 | 1.2 |
Table 3 EDS results for areas marked as A, B, C, and D in each coating
Samples | Elemental composition (at.%) | ||||
---|---|---|---|---|---|
O | F | Mg | Si | Zn | |
Z0 | 48.5 | 8.2 | 31.7 | 11.0 | 0.7 |
Z2 | 50.8 | 6.3 | 32.2 | 9.7 | 0.9 |
Z5 | 46.8 | 9.2 | 30.9 | 9.7 | 3.5 |
Z8 | 49.6 | 8.3 | 31.5 | 9.4 | 1.2 |
Samples | icorr (μA/cm2) | Ecorr (V vs. SCE) | Corrosion rate (mm/y) |
---|---|---|---|
Z0 | 0.76 ± 0.3 | − 1.45 ± 0.01 | 0.0174 ± 0.001 |
Z2 | 0.08 ± 0.002 | − 1.48 ± 0.02 | 0.0018 ± 0.0001 |
Z5 | 0.06 ± 0.002 | − 1.49 ± 0.01 | 0.0002 ± 0.00001 |
Z8 | 0.29 ± 0.01 | − 1.49 ± 0.02 | 0.0066 ± 0.0001 |
Table 4 Fitting results of dynamic polarization curves of samples in Hank's solution
Samples | icorr (μA/cm2) | Ecorr (V vs. SCE) | Corrosion rate (mm/y) |
---|---|---|---|
Z0 | 0.76 ± 0.3 | − 1.45 ± 0.01 | 0.0174 ± 0.001 |
Z2 | 0.08 ± 0.002 | − 1.48 ± 0.02 | 0.0018 ± 0.0001 |
Z5 | 0.06 ± 0.002 | − 1.49 ± 0.01 | 0.0002 ± 0.00001 |
Z8 | 0.29 ± 0.01 | − 1.49 ± 0.02 | 0.0066 ± 0.0001 |
Fig. 6 Electrochemical tests of impedance curves: a Nyquist curves; b Bode curves; c Bode phase angle curves; d equivalent circuit of ZnO + MAO coated alloy
Samples | Z0 | Z2 | Z5 | Z8 | ||
---|---|---|---|---|---|---|
Rs | (Ω cm2) | 8.45 × 10-5 | 17.85 | 16.84 | 23.56 | |
Q1 | Y01 | (S sn cm−2) | 1.84 × 10-6 | 2.88 × 10-7 | 2.56 × 10-7 | 1.68 × 10-7 |
n1 | 0.60 | 0.81 | 0.81 | 0.84 | ||
R1 | (Ω cm2) | 3.20 × 103 | 3.94 × 103 | 4.10 × 103 | 2.41 × 103 | |
Q2 | Y02 | (S sn cm−2) | 3.65 × 10-6 | 1.42 × 10-6 | 1.8510-6 | 2.03 × 10-6 |
n2 | 0.56 | 0.65 | 0.63 | 0.62 | ||
R2 | 3.946 × 104 | 6.44 × 104 | 6.49 × 105 | 6.11 × 104 | ||
L | (H cm−2) | 2.34 × 104 | 2.38 × 104 | 2.32 × 107 | 2.49 × 104 | |
R3 | (Ω cm2) | 1.99 × 104 | 1.30 × 104 | 1.39 × 105 | 1.68 × 104 |
Table 5 Fitting results of the impedance curve of the sample in Hank's solution
Samples | Z0 | Z2 | Z5 | Z8 | ||
---|---|---|---|---|---|---|
Rs | (Ω cm2) | 8.45 × 10-5 | 17.85 | 16.84 | 23.56 | |
Q1 | Y01 | (S sn cm−2) | 1.84 × 10-6 | 2.88 × 10-7 | 2.56 × 10-7 | 1.68 × 10-7 |
n1 | 0.60 | 0.81 | 0.81 | 0.84 | ||
R1 | (Ω cm2) | 3.20 × 103 | 3.94 × 103 | 4.10 × 103 | 2.41 × 103 | |
Q2 | Y02 | (S sn cm−2) | 3.65 × 10-6 | 1.42 × 10-6 | 1.8510-6 | 2.03 × 10-6 |
n2 | 0.56 | 0.65 | 0.63 | 0.62 | ||
R2 | 3.946 × 104 | 6.44 × 104 | 6.49 × 105 | 6.11 × 104 | ||
L | (H cm−2) | 2.34 × 104 | 2.38 × 104 | 2.32 × 107 | 2.49 × 104 | |
R3 | (Ω cm2) | 1.99 × 104 | 1.30 × 104 | 1.39 × 105 | 1.68 × 104 |
Fig. 8 Surface morphologies of the coating after 7 days of immersion: a1 Z0; b1 Z2; c1 Z5; d1 Z8. Surface morphologies after immersing for 14 days: a2 Z0; b2 Z2; c2 Z5; d2 Z8. Surface morphologies of the corrosion products were removed after 14 days of immersion: a3 Z0; b3 Z2; c3 Z5; d3 Z8. Macro-morphologies of coating surface after 14 days of immersion: a4 Z0; b4 Z2; c4 Z5; d4 Z8
Fig. 9 Cross-sectional morphologies of the coating after being immersed for 7 days: a1 Z0; b1 Z2; c1 Z5; d1 Z8; cross-sectional morphologies after immersing for 14 days: a2 Z0; b2 Z2; c2 Z5; d2 Z8
Samples | Immersion days | Elemental composition (at.%) | |||||
---|---|---|---|---|---|---|---|
O | Mg | Si | P | Ca | Zn | ||
Z0 | 7 | 61.6 | 22.9 | 6.3 | 5.5 | 3.4 | 0.5 |
14 | 55.0 | 25.7 | 8.6 | 5.4 | 4.0 | 1.3 | |
Z2 | 7 | 57.3 | 27.2 | 7.4 | 4.1 | 2.7 | 1.3 |
14 | 54.4 | 27.4 | 7.7 | 5.7 | 3.6 | 1.1 | |
Z5 | 7 | 59.7 | 27.4 | 7.4 | 2.6 | 1.3 | 1.6 |
14 | 53.5 | 27.0 | 8.3 | 5.9 | 4.0 | 1.3 | |
Z8 | 7 | 62.6 | 22.6 | 5.1 | 4.4 | 3.8 | 1.6 |
14 | 53.8 | 28.5 | 8.0 | 4.7 | 3.1 | 1.9 |
Table 6 EDS results of corroded surfaces of coated samples after immersion
Samples | Immersion days | Elemental composition (at.%) | |||||
---|---|---|---|---|---|---|---|
O | Mg | Si | P | Ca | Zn | ||
Z0 | 7 | 61.6 | 22.9 | 6.3 | 5.5 | 3.4 | 0.5 |
14 | 55.0 | 25.7 | 8.6 | 5.4 | 4.0 | 1.3 | |
Z2 | 7 | 57.3 | 27.2 | 7.4 | 4.1 | 2.7 | 1.3 |
14 | 54.4 | 27.4 | 7.7 | 5.7 | 3.6 | 1.1 | |
Z5 | 7 | 59.7 | 27.4 | 7.4 | 2.6 | 1.3 | 1.6 |
14 | 53.5 | 27.0 | 8.3 | 5.9 | 4.0 | 1.3 | |
Z8 | 7 | 62.6 | 22.6 | 5.1 | 4.4 | 3.8 | 1.6 |
14 | 53.8 | 28.5 | 8.0 | 4.7 | 3.1 | 1.9 |
Fig. 13 Schematic diagram of corrosion mechanism, a and c MAO coating without ZnO. There are many micro-pores that act as the corrosion channel, and the substrate is easily corroded. b When ZnO is introduced into the coating, the micro-pores sites are occupied by the ZnO. Moreover, it is beneficial for the formation of compact inner layer. d When the coating is corroded, some ions such as Mg2+, PO43−, OH−, cannot permeate into the substrate. They deposit on the surface of the coating and increase the corrosion resistance
[1] | S.F. Jawed, C.D. Rabadia, M.A. Khan, S.J. Khan, ACS Omega 7, 29526 (2022) |
[2] | F. Gao, Y. Hu, G. Li, S. Liu, L. Quan, Z. Yang, Y. Wei, C. Pan, Bioact. Mater. 5, 611 (2020) |
[3] |
B. Chen, K.Y. Yin, T.F. Lu, B.Y. Sun, Q. Dong, J.X. Zheng, C. Lu, Z.C. Li, J. Mater. Sci. Technol. 32, 858 (2016)
DOI |
[4] | L. Ling, S. Cai, Q. Li, J. Sun, X. Bao, G. Xu, J. Magnes. Alloy 10, 62 (2022) |
[5] | J.X. Tao, M.C. Zhao, Y.C. Zhao, D.F. Yin, L. Liu, C. Gao, C. Shuai, A. Atrens, J. Magnes. Alloy 8, 952 (2020) |
[6] |
Y. Li, G. Liu, Z. Zhai, L. Liu, H. Li, K. Yang, L. Tan, P. Wan, X. Liu, Z. Ouyang, Z. Yu, T. Tang, Z. Zhu, X. Qu, K. Dai, Antimicrob. Agents Chemother. 58, 7586 (2014)
DOI PMID |
[7] | D. Xia, Y. Liu, S. Wang, R.C. Zeng, Y. Liu, Y. Zheng, Y. Zhou, Sci. China Mater. 62, 256 (2019) |
[8] | F. Witte, J. Fischer, J. Nellesen, H.A. Crostack, V. Kaese, A. Pisch, F. Beckmann, H. Windhagen, Biomaterials 27, 1013 (2006) |
[9] | A. Lipovsky, Y. Nitzan, A. Gedanken, R. Lubart, Nanotechnology 22, 105101 (2011) |
[10] |
S. Hackenberg, A. Scherzed, A. Technau, K. Froelich, R. Hagen, N. Kleinsasser, J. Biomed. Nanotechnol. 9, 86 (2013)
PMID |
[11] | Y. Xie, Y. He, P.L. Irwin, T. Jin, X. Shi, Appl. Environ. Microbiol. 77, 2325 (2011) |
[12] | H.R. Bakhsheshi-Rad, E. Hamzah, A.F. Ismail, M. Aziz, M. Kasiri-Asgarani, E. Akbari, S. Jabbarzare, A. Najafinezhad, Z. Hadisi, Ceram. Int. 43, 14842 (2017) |
[13] | H.M. Mousa, A. Abdal-hay, M. Bartnikowski, I.M.A. Mohamed, A.S. Yasin, S. Ivanovski, C.H. Park, C.S. Kim, A.C.S. Biomater, Sci. Eng. 4, 2169 ( (2018) |
[14] | Y.H. Zou, J. Wang, L.Y. Cui, R.C. Zeng, Q.Z. Wang, Q.X. Han, J. Qiu, X.B. Chen, D.C. Chen, S.K. Guan, Y.F. Zheng, Acta Biomater. 98, 196 (2019) |
[15] | A. Keyvani, M. Zamani, A. Fattah-Alhosseini, S.H. Nourbakhsh, M. Bahamirian, Mater. Res. Express 5, 086510 (2018) |
[16] | Y. Shen, X. Shan, I.P. Etim, M.A. Siddiqui, Y. Yang, Z. Shi, X. Su, J. Chen, Acta Metall. Sin. -Engl. Lett. 37, 242 (2024) |
[17] | Y. Li, L. Liu, P. Wan, Z. Zhai, Z. Mao, Z. Ouyang, D. Yu, Q. Sun, L. Tan, L. Ren, Z. Zhu, Y. Hao, X. Qu, K. Yang, K. Dai, Biomaterials 106, 250 (2016) |
[18] | R. Liu, Y. Tang, L. Zeng, Y. Zhao, Z. Ma, Z. Sun, L. Xiang, L. Ren, K. Yang, Dent. Mater. 34, 1112 (2018) |
[19] | M. Chen, Y. Ma, Y. Hao, Front. Mech. Eng. China 5, 98 (2010) |
[20] | C. Yang, S. Cui, R.K.Y. Fu, L. Sheng, M. Wen, D. Xu, Y. Zhao, Y. Zheng, P.K. Chu, Z. Wu, J. Mater. Sci. Technol. 179, 224 (2024) |
[21] | T.S. Lim, H.S. Ryu, S.H. Hong, Corros. Sci. 62, 104 (2012) |
[22] | X. Li, B.L. Luan, Mater. Lett. 86, 88 (2012) |
[23] | B.S. Necula, L.E. Fratila-Apachitei, A. Berkani, I. Apachitei, J. Duszczyk, J. Mater. Sci. -Mater. Med. 20, 339 (2009) |
[24] | A. Keyvani, M. Zamani, M. Bahamirian, E. Nikoomanzari, A. Fattah-alhosseini, H. Sina, Surf. Interfaces 22, 100728 (2021) |
[25] | J. Wang, Z. Wang, J. Dou, Y. Li, C. Hu, H. Yu, C. Chen, J. Mater. Res. Technol. 25, 2527 (2023) |
[26] | Y. Feng, S. Zhu, L. Wang, L. Chang, Y. Hou, S. Guan, Bioact. Mater. 3, 225 (2018) |
[27] | W. Zhang, M.C. Zhao, Z. Wang, L. Tan, Y. Qi, D.F. Yin, K. Yang, A. Atrens, J. Magnes. Alloy 11, 2776 (2023) |
[28] | J. Li, J. Li, Q. Li, H. Zhou, G. Wang, X. Peng, W. Jin, Z. Yu, P.K. Chu, W. Li, Surf. Coat. Technol. 410, 126940 (2021) |
[29] | K. Niu, D. Zhang, F. Qi, J. Lin, Y. Dai, J. Mater. Res. Technol. 21, 4969 (2022) |
[30] | Z. Zheng, M.C. Zhao, L. Tan, Y.C. Zhao, B. Xie, D. Yin, K. Yang, A. Atrens, Surf. Coat. Technol. 386, 125456 (2020) |
[31] | D.A. Robinson, R.W. Griffith, D. Shechtman, R.B. Evans, M.G. Conzemius, Acta Biomater. 6, 1869 ( (2010) |
[32] | S. Sarbishei, M.A. FaghihiSani, M.R. Mohammadi, Vacuum 108, 12 (2014) |
[33] | M.C. Zhao, Y.C. Zhao, D.F. Yin, S. Wang, Y.M. Shangguan, C. Liu, L.L. Tan, C.J. Shuai, K. Yang, A. Atrens, Acta. Metall. Sin. -Engl. Lett. 32, 1195 (2019) |
[34] | Y. Cheng, T. Wang, S. Li, Y. Cheng, J. Cao, H. Xie, Electrochim. Acta 225, 47 (2017) |
[35] | S. Liu, G. Li, Y. Qi, Z. Peng, Y. Ye, J. Liang, J. Magnes. Alloy 10, 3406 (2022) |
[36] | H. Ji, M.C. Zhao, B. Xie, Y.C. Zhao, D. Yin, C. Gao, C. Shuai, A. Atrens, J. Alloys Compd. 864, 158415 (2021) |
[37] | R. Marsalek. APCBEE Proc. 9, 13 (2014) |
[38] | M. Peng, F. Hu, M. Du, B. Mai, S. Zheng, P. Liu, C. Wang, Y. Chen, Front. Mater. Sci. 14, 14 (2020) |
[39] | J. Yuan, B. Sheng, G. Tang, Q. Liu, J. Mech. Sci. Technol. 37, 4401 (2023) |
[40] | Q. Ye, W. Chen, H. Huang, Y. Tang, W. Wang, F. Meng, H. Wang, Y. Zheng, Appl. Microbiol. Biotechnol. 104, 5213 (2020) |
[41] | Y.W. Wang, A. Cao, Y. Jiang, X. Zhang, J.H. Liu, Y. Liu, H. Wang, A.C.S. Appl, Mater. Interfaces 6, 2791 (2014) |
[42] |
B.S. Necula, I. Apachitei, F.D. Tichelaar, L.E. Fratila-Apachitei, J. Duszczyk, Acta Biomater. 7, 2751 (2011)
DOI PMID |
[1] | Xiaoming Liu, Fengyang Quan, Yuan Gao, Shaodong Zhang, Jianbin Wang, Zhijun Wang, Junjie Li, Feng He, Jincheng Wang. Comparison of Hot Corrosion Behavior of Ni36Fe34Al17Cr10Mo1Ti2 and Ni34Co25Fe12Al15Cr12W2 Alloys in NaCl-KCl-Na2SO4 Salt [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(2): 205-217. |
[2] | Xingpeng Liao, Jialuo Huang, Zhilin Liu, Jingru Guo, Dajiang Zheng, Pengbo Chen, Fuyong Cao. Degradation Behavior of Zn-Cu Stents with Different Coatings in Sodium Chloride Solution [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(9): 1564-1580. |
[3] | Jingjing Peng, Jing Liu, Shen Zhang, Zhihui Wang, Xian Zhang, Kaiming Wu. Effects of Environmental Factors on Corrosion Behavior of E690 Steel in Simulated Marine Environment [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(4): 678-694. |
[4] | Jinchao Jiao, Jin Zhang, Yong Lian, Shengli Han, Kaihong Zheng, Fusheng Pan. Influence of Micro/Nano-Ti Particles on the Corrosion Behavior of AZ31-Ti Composites [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(3): 484-498. |
[5] | Ying Shen, Xianfeng Shan, Iniobong P. Etim, Muhammad Ali Siddiqui, Yang Yang, Zewen Shi, Xuping Su, Junxiu Chen. Comparative Study of the Effects of Nano ZnO and CuO on the Biodegradation, Biocompatibility, and Antibacterial Properties of Micro-arc Oxidation Coating of Magnesium Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(2): 242-254. |
[6] | Gang Niu, Rui Yuan, R. D. K. Misra, Na Gong, Zhi-Hui Zhang, Hao-Xiu Chen, Hui-Bin Wu, Cheng-Jia Shang, Xin-Ping Mao. Effect of La on the Corrosion Behavior and Mechanism of 3Ni Weathering Steel in a Simulated Marine Atmospheric Environment [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(2): 308-324. |
[7] | Zhibin Liu, Guangya Zhu, Wenkai Li, Di Mei, Peihua Du, Yufeng Sun, Shijie Zhu, Shaokang Guan. Effect of Rolling Temperature on the Mechanical Properties and Corrosion Behavior of Mg-Zn-Y-Nd Alloy Thin Sheets [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(10): 1721-1734. |
[8] | Yu-Hang Chu, Liang-Yu Chen, Bo-Yuan Qin, Wenbin Gao, Fanmin Shang, Hong-Yu Yang, Lina Zhang, Peng Qin, Lai-Chang Zhang. Unveiling the Contribution of Lactic Acid to the Passivation Behavior of Ti-6Al-4V Fabricated by Laser Powder Bed Fusion in Hank’s Solution [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 102-118. |
[9] | Kai Hu, Lei Zhang, Yuanjie Zhang, Bo Song, Shifeng Wen, Qi Liu, Yusheng Shi. Electrochemical Corrosion Behavior and Mechanical Response of Selective Laser Melted Porous Metallic Biomaterials [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(8): 1235-1246. |
[10] | Xian Zhang, Li Gong, Yanpeng Feng, Zhihui Wang, Miao Yang, Lin Cheng, Jing Liu, Kaiming Wu. Effect of Retained Austenite on Corrosion Behavior of Ultrafine Bainitic Steel in Marine Environment [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(5): 717-731. |
[11] | Xin Wei, Yupeng Sun, Junhua Dong, Nan Chen, Qiying Ren, Wei Ke. Effects of Aerobic and Anoxic Conditions on the Corrosion Behavior of NiCu Low Alloy Steel in the Simulated Groundwater Solutions [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(5): 745-757. |
[12] | Xuejian Wang, Huaqiang Xiao, Keqiang Su, Bo Lin, Tongmin Wang, Enyu Guo. Effect of Extrusion Temperature on the Mechanical Properties and Corrosion Behavior of LZ91 Alloys [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(11): 1822-1832. |
[13] | Ziyue Xu, Huan Liu, Guangyang Hu, Xiaoru Zhuo, Kai Yan, Jia Ju, Wenkai Wang, Hang Teng, Jinghua Jiang, Jing Bai. Developing Zn-1.5Mg Alloy with Simultaneous Improved Strength, Ductility and Suitable Biodegradability by Rolling at Room Temperature [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(11): 1833-1843. |
[14] | Bao-Chang Liu, Shuai Zhang, Hong-Wei Xiong, Wen-Hao Dai, Yin-Long Ma. Effect of Al Content on the Corrosion Behavior of Extruded Dilute Mg-Al-Ca-Mn Alloy [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(1): 77-90. |
[15] | Xiong Zhou, Qichi Le, Chenglu Hu, Ruizhen Guo, Tong Wang, Chunming Liu, Dandan Li, Xiaoqiang Li. Mechanical Properties and Corrosion Behavior of Multi-Microalloying Mg Alloys Prepared by Adding AlCoCrFeNi Alloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1301-1316. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||