Acta Metallurgica Sinica (English Letters) ›› 2025, Vol. 38 ›› Issue (2): 218-232.DOI: 10.1007/s40195-024-01795-w
Previous Articles Next Articles
Ji-Peng Yang1, Hai-Feng Zhang1(), Hong-Chao Ji1, Nan Jia2(
)
Received:
2024-08-13
Revised:
2024-09-10
Accepted:
2024-09-13
Online:
2025-02-10
Published:
2024-11-16
Contact:
Hai-Feng Zhang, Ji-Peng Yang, Hai-Feng Zhang, Hong-Chao Ji, Nan Jia. Molecular Dynamics Simulations of Micromechanical Behaviours for AlCoCrFeNi2.1 High Entropy Alloy during Nanoindentation[J]. Acta Metallurgica Sinica (English Letters), 2025, 38(2): 218-232.
Add to citation manager EndNote|Ris|BibTeX
Fig. 2 a Indentation force-indentation depth curves for FCC structure models with [100], [110], and [111] orientations during nanoindentation. b Magnification image of indentation force-indentation depth curves at elastic-plastic transition point
Fig. 3 a1-a3 Atomic structures and b1-b3 dislocation line distributions corresponding to a1-a3 of single crystals with different initial orientations at elastic-plastic transition point
Fig. 4 a1-a3 Atomic structures, b1-b3 dislocation line distributions, and c1-c3 dislocation length of different dislocation kinds corresponding to a1-a3 of single crystals with initial orientations of [100], [110], and [111] at the indentation depth of 3 nm
Fig. 5 a Indentation force-indentation depth curves for B2 structure models with [100], [110], and [111] orientations during nanoindentation. b Magnification image of indentation force-indentation depth curves at elastic-plastic transition point
Fig. 6 a1-a3 Atomic structures and b1-b3 dislocation line distributions corresponding to a1-a3 of single crystals with different initial orientations at elastic-plastic transition point
Fig. 7 a1-a3 Atomic structures, b1-b3 dislocation line distributions, and c1-c3 dislocation length of different dislocation kinds corresponding to a1-a3 of single crystals with initial orientations of [100], [110], and [111] at the indentation depth of 3 nm
Fig. 8 Indentation force-indentation depth curves for [110]-oriented FCC, [111]-oriented B2 single crystals, and FCC/B2 composites with different B2 phase thicknesses during nanoindentation
Fig. 9 Indentation force-indentation depth curve and corresponding a1-a5 atomic structures as well as b1-b5 dislocation line distributions for Composite I at different indentation depths
Fig. 10 Indentation force-indentation depth curve and corresponding a1-a5 atomic structures as well as b1-b5 dislocation line distributions for Composite II at different indentation depths
Fig. 11 Indentation force-indentation depth curve and corresponding a1-a5 atomic structures as well as b1-b5 dislocation line distributions for Composite III at different indentation depths
Fig. 12 Atomic shear strain distribution for simulated Composites at different indentation depths. a1-a3, b1-b3, c1-c3 represented Composite I, II, and III, respectively
[1] | Y. Zhang, T. Zuo, Z. Tang, M. Gao, K. Dahmen, P. Liaw, Z. Lu, Prog. Mater. Sci. 61, 1 (2014) |
[2] | Z. Li, S. Zhao, R. Ritchie, M. Meyers, Prog. Mater. Sci. 102, 296 (2019) |
[3] |
E. George, W. Curtin, C. Tasan, Acta Mater. 188, 435 (2020)
DOI |
[4] | T. Han, J. Wang, B. Li, S. Li, K. Ming, F. Wang, B. Miao, S. Zheng, Acta Metall. Sin. -Engl. Lett. 36, 1857 (2023) |
[5] | Y. Guo, H. Su, P. Yang, Y. Zhang, Z. Shen, Y. Liu, D. Zhao, H. Jiang, J. Zhang, L. Liu, H. Fu, Acta Metall. Sin. -Engl. Lett. 35, 1407 (2022) |
[6] | M. Wang, Y. Lu, T. Wang, C. Zhang, Z. Cao, T. Li, P. Liaw, Scr. Mater. 204, 114132 (2021) |
[7] | M. Wang, Y. Lu, J. Lan, T. Wang, C. Zhang, Z. Cao, T. Li, P. Liaw, Acta Mater. 248, 118806 (2023) |
[8] | Y. Lu, Y. Dong, S. Guo, L. Jiang, H. Kang, T. Wang, B. Wen, Z. Wang, J. Jie, Z. Cao, H. Ruan, T. Li, Sci. Rep. 4, 6200 (2014) |
[9] | Y. Lu, X. Gao, L. Jiang, Z. Chen, T. Wang, J. Jie, H. Kang, Y. Zheng, S. Guo, H. Ruan, Y. Zhao, Z. Cao, T. Li, Acta Mater. 124, 143 (2017) |
[10] | S. Jiao, Z. Wang, Z. Zhou, R. Cao, J. Mater. Heat. Treat. 43, 66 (2022) |
[11] | S. Xia, X. Yang, T. Yang, Y. Zhang, JOM 67, 2340 (2015) |
[12] | M. Asoushe, A. Hanzaki, H.R, B. Mirshekari, T. Wegener, S. Sajadifar, T. Niendorf, Mater. Sci. Eng. A-Struct. 799, 140012 (2021) |
[13] | Y. Lu, Y. Dong, H. Jiang, Z. Wang, Z. Cao, S. Guo, T. Wang, T. Li, P. Liaw, Scr. Mater. 187, 202 (2020) |
[14] | P. Shi, W. Ren, T. Zheng, Z. Ren, X. Hou, J. Peng, P. Hu, Y. Gao, Y. Zhong, P. Liaw, Nat. Commun. 10, 489 (2019) |
[15] | X. Wu, Y. Zhu, Rev. Lett. 101, 025503 (2008) |
[16] | Y. Qi, Z. Luo, X. Li, K. Lu, Y. Qi, J. Mater. Sci. Technol. 121, 124 (2022) |
[17] | Q. Li, J. Zhang, H. Tang, H. Ye, Y. Zheng, Nanotechnology 30, 27 (2019) |
[18] | V. Maier-Kiener, B. Schuh, E. George, H. Clemens, A. Hohenwarter, J. Mater. Res. 32, 2658 (2017) |
[19] | D. Doan, Mater. Chem. Phys. 291, 126725 (2022) |
[20] | S. Singh, G. Kumar, P. Babu, S. Pal, S. Vashistha, M. Azam, S. Dixit, Philos. Mag. 102, 17 (2022) |
[21] | C. Peng, F. Zeng, B. Yuan, Y. Wang, Appl. Surf. Sci. 492, 579 (2019) |
[22] |
Q. Zhang, R. Huang, X. Zhang, T. Cao, Y. Xue, X. Li, Nano Lett. 21, 3671 (2021)
DOI PMID |
[23] | J. Chen, S. Li, Y. Chen, Exp. Shock Waves. 44, 031401 (2024) |
[24] | D. Choudhuri, S. Srinivasan, R. Mishra, Int. J. Plast. 125, 191 (2020) |
[25] | H. Zhang, H. Yan, F. Fang, N. Jia, Acta Metall. Sin. -Engl. Lett. 35, 1631 (2022) |
[26] | Y. Liu, H. Zhang, Y. Yang, L. Sun, X. Zhao, H. Yan, Y. Shen, N. Jia, J. Alloy. Compd. 968, 172002 (2023) |
[27] | J. Pang, T. Xiong, W. Yang, H. Ge, X. Zheng, M. Song, S. Zheng, J. Mater. Sci. Technol. 129, 87 (2022) |
[28] | S. Plimpton, J. Comput. Phys. 117, 1 (1995) |
[29] | K. Reddy, S. Pal, Mol. Simul. 44, 1393 (2018) |
[30] | S. Chowdhury, E. Wise, R. Ganesh, J. Gillespie Jr., Eng. Fract. Mech. 207, 99 (2019) |
[31] | D. Farkas, A. Caro, J. Mater. Res. 33, 3218 (2018) |
[32] | C. Qiu, P. Zhu, F. Fang, D. Yuan, X. Shen, Appl. Surf. Sci. 305, 101 (2014) |
[33] | Q. Fang, M. Yi, J. Li, B. Liu, Z. Huang, Appl. Surf. Sci. 443, 122 (2018) |
[34] | A. Stukowski, Model. Simul. Mater. Sc. 18, 015012 (2009) |
[35] | A. Stukowski, V. Bulatov, A. Arsenlis, Model. Simul. Mater. Sc. 20, 8085007 (2012) |
[36] | J. Honeycutt, H. Andersen, J. Phys. Chem. C 91, 4950 (1987) |
[37] | H. Zhang, H. Yan, F. Fang, N. Jia, Acta Metall. Sin. -Engl. Lett. 34, 11 (2021) |
[38] | D. Zhang, J. Zhang, J. Kuang, G. Liu, J. Sun, Acta Mater. 220, 117288 (2021) |
[39] | B. De Cooman, C. Estrin, S. Kim, Acta Mater. 142, 283 (2018) |
[40] | J. Li, K. Van Vliet, T. Zhu, S. Yip, S. Suresh, Nature 418, 6895 (2002) |
[41] | Q. Liu, L. Deng, X. Wang, Mater. Sci. Eng. A 676, 182 (2016) |
[1] | Shun-Fu Xie, Han-Qiu Jiang, Zhen-Hua Xie, Wei-Wen Zhang, Yu-Bin Ke. Unravel the Spinodal Decomposition Kinetics in (FeCoCrNi)85(AlCu)15 Alloy through Small-Angle Neutron Scattering [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(1): 86-92. |
[2] | Yuqi Liu, Feng Wang, Songyang Chen, Hui Wang, Zhiping Xiong, Khurram Yaqoob, Zhangwei Wang, Min Song. Thermal Stability and Strengthening Effect of Coherent Precipitates in a (FeCoNi)92Al2.5Ti5.5 High Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(9): 1491-1500. |
[3] | Jie Lu, Yanhui Li, Shuang Ma, Wanping Li, Feng Bao, Zhengwang Zhu, Qiaoshi Zeng, Haifeng Zhang, Man Yao, Wei Zhang. Novel Soft Magnetic Co-Based Ternary Co-Er-B Bulk Metallic Glasses [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(9): 1633-1642. |
[4] | Quanzhen Li, Chengming Li, Xiaojing Wang, Shanshan Cai, Jubo Peng, Shujin Chen, Jiajun Wang, Xiaohong Yuan. Microstructure and Shear Properties Evolution of Minor Fe-Doped SAC/Cu Substrate Solder Joint under Isothermal Aging [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(7): 1279-1290. |
[5] | Yujing Zhou, Siyi Peng, Yueling Guo, Xiaoxiang Wu, Changmeng Liu, Zhiming Li. Microstructure Modification and Ductility Improvement for TaMoNbZrTiAl Refractory High Entropy Alloys via Increasing Ti Content [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(7): 1186-1200. |
[6] | Hong-Wei Zhang, Li-Wei Lan, Zhe-Yu Yang, Chang-Chun Li, Wen-Xian Wang. Microstructure Evolution and Nanomechanical Behavior of Micro-Area in Molten Pool of Selective Laser Melting (CoCrNi)82Al9Ti9 High-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(6): 1019-1033. |
[7] | Chuan Rong, Jieren Yang, Xiaoliang Zhao, Ke Huang, Ying Liu, Xiaohong Wang, Dongdong Zhu, Ruirun Chen. Microstructure Recrystallization and Mechanical Properties of a Cold-Rolled TiNbZrTaHf Refractory High-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(4): 633-647. |
[8] | Yue-Hui Dang, Sheng-Lin Liu, Xiao-Lei Ai, Xiao-Wei Feng, Bo Feng, Zhuo Tian, Ying-Fei Lin, Huan-Tao Chen, Kai-Hong Zheng. Microstructure and Mechanical Behavior of Mg-Based Bimetal Plates with High Formability Sleeve by Co-extrusion [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(3): 499-512. |
[9] | Xinbo Shi, Yunji Qiu, Xiaoyu Bai, Yiming Chen, Yongqiang Wang, Tao Xu, Jincheng Wang, Junjie Li, Zhijun Wang. Microstructure Selection in Ton Class Ingot of Al17Cr10Fe33Ni36Mo2Ti2 Eutectic High Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(12): 2008-2018. |
[10] | Libo Zhou, Biao Peng, Jian Chen, Yanjie Ren, Yan Niu, Wei Qiu, Jianzhong Tang, Zhou Li, Wei Chen, Weiying Huang, Cong Li. Microstructure Evolution and High Strength-Ductility Synergy of Ti-13Nb-13Zr-2Ta Alloy Fabricated by Laser Powder Bed Fusion [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(12): 2029-2044. |
[11] | Tianyi Zhang, Chenjun Yu, Bo Xiao, Ju Liu, Zhongliang Zhu, Naiqiang Zhang. Effects of Thermal Aging on the Oxidation Behavior of 316L Austenitic Steel in 600 °C Supercritical Fired Boiler: Mechanism Based on Interface Features [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(12): 2150-2162. |
[12] | Chunhui Wang, Lei Guo, Rui Li, Qing Peng. Atomistic Insights into the Irradiation Resistance of Co-Free High Entropy Alloy FeMnNiCr [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(10): 1657-1666. |
[13] |
Chao Wang, Xi Zhao, Yayun He, Dingxia Zheng.
Implementation of Balanced Strength and Toughness of VW93A Rare-Earth Magnesium Alloy with Regulating the Overlapping Structure of Lamellar LPSO Phase and |
[14] | Rui Li, Lei Guo, Yu Liu, Qingsong Xu, Qing Peng. Irradiation Resistance of CoCrCuFeNi High Entropy Alloy under Successive Bombardment [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(9): 1482-1492. |
[15] | Kai Hu, Lei Zhang, Yuanjie Zhang, Bo Song, Shifeng Wen, Qi Liu, Yusheng Shi. Electrochemical Corrosion Behavior and Mechanical Response of Selective Laser Melted Porous Metallic Biomaterials [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(8): 1235-1246. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||