Acta Metallurgica Sinica (English Letters) ›› 2022, Vol. 35 ›› Issue (7): 1090-1102.DOI: 10.1007/s40195-021-01344-9
Previous Articles Next Articles
Yanyuan Zhou1, Zhenqiang Wang1(), Haokai Dong2(
), Fengchun Jiang1
Received:
2021-06-30
Revised:
2021-08-06
Accepted:
2021-08-17
Online:
2022-07-10
Published:
2021-11-03
Contact:
Zhenqiang Wang,Haokai Dong
About author:
Haokai Dong, dong-hk16@tsinghua.org.cnYanyuan Zhou, Zhenqiang Wang, Haokai Dong, Fengchun Jiang. Carbide Precipitation in Austenite of a Titanium-Tungsten-Bearing Low-Carbon Steel[J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1090-1102.
Add to citation manager EndNote|Ris|BibTeX
Steel | C | Si | Mn | Ti | W | S | P | N | Ae3 (°C) |
---|---|---|---|---|---|---|---|---|---|
Ti-W | 0.043 | 0.20 | 1.50 | 0.095 | 0.39 | 0.0035 | 0.0060 | 0.0022 | 858 |
Ti | 0.046 | 0.12 | 1.47 | 0.097 | - | 0.0060 | 0.0073 | 0.0024 | 850 |
Table 1 Chemical composition (wt%) and ferrite transformation critical temperature (Ae3) calculated by Thermo-Calc with the database of TCFE7
Steel | C | Si | Mn | Ti | W | S | P | N | Ae3 (°C) |
---|---|---|---|---|---|---|---|---|---|
Ti-W | 0.043 | 0.20 | 1.50 | 0.095 | 0.39 | 0.0035 | 0.0060 | 0.0022 | 858 |
Ti | 0.046 | 0.12 | 1.47 | 0.097 | - | 0.0060 | 0.0073 | 0.0024 | 850 |
Fig. 1 a TEM image of the precipitates in the Ti-W sample after the deformation and stress relaxation for 200 s followed by water quenching, EDS results (at.%) of b Type 1 precipitate, c Type 2 precipitate and d Type 3 precipitate marked in (a). The peaks of Cu are from the Cu grid that supports the carbon replica. It should be noted that the distribution of ultrafine carbides is not uniform, and the number of carbides in the regions marked by yellow lines are obviously less than that in other regions
Fig. 2 High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) image and EDS mapping analysis of a precipitate Type 1, b precipitate Type 2, and c precipitate Type 3. The white dashed lines surround the particles
Fig. 3 a Three-dimensional atom maps of Ti-W-bearing steel after stress relaxation for 60 s at 925 ℃ followed by water quenching, b an atom map of one (Ti, W)C nanoprecipitate and one-dimensional concentration profiles along three perpendicular directions, and c HAADF-STEM image of the Type 1 precipitate with the core-shell structure. In c, the contrast at the edge of the particle is bright, which reflects the large atomic number, showing a clear W-enriched shell. It should be noted that the contents of elements in the carbide shown in b are found to be less than 6 at.%, which is much lower than the theoretical percentage of MC (~ 50 at.% M and 50 at.% C). Such phenomenon should be caused by local magnification effects in APT measurements [39]
Fig. 4 TEM analysis of a Type 1 particle in the Ti-W-bearing steel: a schematic diagram showing the projection geometry of a particle with octahedral shape, b TEM image and c SAED of a Type 1 particle, d HRTEM, e IFFT and f FFT lattice images of the lower-right corner of the particle marked with white rectangle in b, g isopach map of the projection of the (Ti, W)C particle shown in b, h HAADF-STEM image of the (Ti, W)C particle, and i sublattice fraction measured by nanobeam EDS (spot size 1.0 nm) of Ti, W, and Fe along one diagonal of the (Ti, W)C particle as shown in h
Fig. 6 a Metallic sublattice fraction of Ti, W, and Fe determined by EDS as a function of particle size, b product of metallic sublattice fraction with particle size as a function of particle size
Element | Sublattice fraction in core (pct) | Sublattice fraction in shell (pct) | Average thickness of shell (nm) | |
---|---|---|---|---|
Ti | 85.6 | 59.5 | 3.98 | |
W | 12.3 | 33.6 | ||
Fe | 2.1 | 6.9 |
Table 2 Metallic sublattice fraction of M (M = Ti, W, and Fe) and average shell thickness of the carbide with core-shell structure
Element | Sublattice fraction in core (pct) | Sublattice fraction in shell (pct) | Average thickness of shell (nm) | |
---|---|---|---|---|
Ti | 85.6 | 59.5 | 3.98 | |
W | 12.3 | 33.6 | ||
Fe | 2.1 | 6.9 |
Fig. 7 Structure analysis of fine carbide particles: a HRTEM image of several ultrafine particles in the Ti-W steel, b the corresponding SAED and calibration of diffractive ring, c HRTEM image of a carbide particle with a composite structure, d magnified image of this particle in c, and e FFT image of the particle in d
Fig. 8 a-d TEM images of the precipitates formed in the Ti-W steel after the deformation at 925 °C and stress relaxation for various holding time: a 60 s, b 200 s, c 1800s and d 3000 s. e-h TEM images of the precipitates formed in the Ti steel after the deformation at 925 °C and stress relaxation for various holding times: e 60 s, f 200 s [18], g 1800s and h 3000 s
Fig. 13 Interfacial chemical energies of MC/γ. “MC0.5-C Inside” indicates the configuration where the C atoms are away from MC/γ interface, and “MC0.5-C Interface” denotes the configuration where the C atoms are located at the MC/γ interface. The symbol “○” represents interstitial vacancy
Formation energy | Strain energy | Interfacial chemical energy | |
---|---|---|---|
Ti | Favored | Not favored | Not favored |
W | Moderated | Moderated with vacancies | Favored |
Fe | Not favored | Favored | Not favored |
Va | Not favored for Ti, favored for W at 50%, favored for Fe | Favored | Not significant |
Table 3 Contribution of Ti, W, Fe and interstitial vacancies (Va) to the stability of MC carbide in austenite
Formation energy | Strain energy | Interfacial chemical energy | |
---|---|---|---|
Ti | Favored | Not favored | Not favored |
W | Moderated | Moderated with vacancies | Favored |
Fe | Not favored | Favored | Not favored |
Va | Not favored for Ti, favored for W at 50%, favored for Fe | Favored | Not significant |
[1] | Q.L. Yong, Microalloyed Steels-Physical and Mechanical Metallurgy (Metall. Industry Press, Beijing, 1989) |
[2] | Q.L. Yong, Secondary Phases in Steels (Metallurgical Industry Press, Beijing, 2006) |
[3] | X.L. Pan, M. Umemoto, Acta Metall. Sin. -Engl. Lett. 31, 1197 (2018) |
[4] | X. Li, X.H. Min, X. Ji, S. Emura, C.Q. Cheng, K. Tsuchiya, Acta Metall. Sin. -Engl. Lett. 31, 604 (2018) |
[5] | H.C Yu, Z.Z. Cai, G. Q. Fu, M. Y. Zhu, Acta Metall. Sin. -Engl. Lett. 32, 352 (2019) |
[6] | Y.C. Zhang, Z.S. Meng, Y. Meng, X. H. J, Z. H. Jiang, Z. J. Ma, Acta Metall. Sin. -Engl. Lett. 32, 526 (2019) |
[7] | K. S. Kim, L. X. Du, H. s. Choe, T. H. Lee, G. C. Lee, Acta Metall. Sin. -Engl. Lett. 33, 705 (2020) |
[8] | Y. Funakawa, T. Shiozaki, K. Tomita, ISIJ Int. 44, 1945 (2004) |
[9] |
H.W. Yen, C.Y. Huang, J.R. Yang, Scr. Mater. 61, 616 (2009)
DOI URL |
[10] |
H.W. Yen, P.Y. Chen, C.Y. Huang, Acta Mater. 59, 6264 (2011)
DOI URL |
[11] |
W.B. Lee, S.G. Hong, C.G. Park, K.H. Kim, S.H. Park, Scr. Mater. 43, 319 (2000)
DOI URL |
[12] |
C.M. Enloe, K.O. Findley, J.G. Speer, Metall. Mater. Trans. A 46, 5308 (2015)
DOI URL |
[13] |
J.H. Jang, C.H. Lee, Y.U. Heo, D.W. Suh, Acta Mater. 60, 208 (2012)
DOI URL |
[14] |
Y.Y. Zhou, Z.Q. Wang, J.Y. Zhao, Z. Leng, Z.Y. Niu, C.H. Guo, Z.Y. Zhang, Z.G. Yang, C.F. Yao, F.C. Jiang, Appl. Phys. A 123, 1 (2017)
DOI URL |
[15] |
N. Kamikawa, Y. ABE, G. Miyamoto, Y. Funakawa, T. Furuhara, ISIJ Int. 54, 212 (2014)
DOI URL |
[16] |
Z.Q. Wang, X.J. Sun, Z.G. Yang, Mater. Sci. Eng. A 573,84 (2013)
DOI URL |
[17] | C.Y. Chen, C.C. Chen, J.R. Yang, Mater. Charater. 88, 69 (2014) |
[18] |
Z. Q. Wang, H. Zhang, C. H. Guo, W. B. L, Z. G. Yang, X. J. Sun, Z. Y. Zhang, F. C. Jiang, J. Mater. Sci. 51(10), 4996 (2016)
DOI URL |
[19] |
Z.Q. Wang, H. Chen, Z.G. Yang, F.C. Jiang, Metall. Mater. Trans. A 49, 1455 (2018)
DOI URL |
[20] |
P. Gong, X.G. Liu, A. Rijkenberg, W.M. Rainforth, Acta Mater. 161, 374 (2018)
DOI URL |
[21] |
S. Mukherjee, I.B. Timokhina, C. Zhu, S.P. Ringer, P.D. Hodgson, Acta Mater. 61, 2521 (2013)
DOI URL |
[22] |
I. Bikmukhametov, H. Beladi, J. Wang, P.D. Hodgson, I. Timokhina, Acta Mater. 170, 75 (2019)
DOI |
[23] |
J.W. Zhao, Z.Y. Jiang, C.S. Lee, Mater. Sci. Eng. A 562,144 (2013)
DOI URL |
[24] |
J.W. Zhao, T. Lee, J.H. Lee, Z.Y. Jiang, C.S. Lee, Metall. Mater. Trans. A 44, 3511 (2013)
DOI URL |
[25] |
Z.Q. Wang, Y.H. Sun, Y.Y. Zhou, Z.G. Yang, F.C. Jiang, Mater. Sci. Eng. A 718,56 (2018)
DOI URL |
[26] |
Z.Q. Wang, J.D. Wang, H.K. Dong, Y.Y. Zhou, F.C. Jiang, Metall. Mater. Trans. A 51, 3778 (2020)
DOI URL |
[27] | Z.M. Wang, X.Y. Zhu, W.Q. Liu, Chin. J. Mater. Res. 24, 217 (2010) |
[28] |
H.K.D.H. Bhadeshia, Scr. Mater. 70, 12 (2014)
DOI URL |
[29] |
E.J. Pavlina, J.G. Speer, T.C.J. Van, Scr. Mater. 66, 243 (2012)
DOI URL |
[30] |
D. Poddar, P. Cizek, H. Beladi, P.D. Hodgson, Acta Mater. 99, 347 (2015)
DOI URL |
[31] |
N. Cautaerts, R. Delville, E. Stergar, D. Schryvers, M. Verwerft, Acta Mater. 164, 90 (2019)
DOI |
[32] |
N.Y. Park, J.H. Choi, P.R. Cha, S.W. Jung, S.H. Chung, S.C. Lee, J. Phys. Chem. C 117, 187 (2013)
DOI URL |
[33] |
J. Wang, P.D. Hodgson, I. Bikmukhametov, M.K. Miller, I. Timokhina, Mater. Des. 141, 48 (2018)
DOI URL |
[34] |
S. Mukherjee, I. Timokhina, C. Zhu, S.P. Ringer, P.D. Hodgson, J. Alloys Compd. 690, 621 (2017)
DOI URL |
[35] | H.S. Zurob, C.R. Hutchinson, Y. Brechet, G. Purdy, Acta Mater. 50, 3075 (2002) |
[36] | R. Uemori, R. Chijiiwa, H. Tamehiro, H. Morikawa, Appl. Surf. Sci. 76, 255 (1994) |
[37] |
S. Jiang, H. Wang, Y. Wu, X. Liu, H. Chen, M. Yao, Z. Lu, Nature 544(7651), 460 (2017)
DOI URL |
[38] |
Z. Wang, H. Zhang, C. Guo, Z. Leng, Z. Yang, X. Sun, C. Yao, Z. Zhang, F. Jiang, Mater Des. 109, 361 (2016)
DOI URL |
[39] |
Y.J. Zhang, G. Miyamoto, T. Furuhara, Microsc. Microanal. 25, 447 (2019)
DOI URL |
[1] | Chenchen Xiong, Jing Bai, Yansong Li, Jianglong Gu, Xinzeng Liang, Ziqi Guan, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. First-Principles Investigation on Phase Stability, Elastic and Magnetic Properties of Boron Doping in Ni-Mn-Ti Alloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1175-1183. |
[2] | He Xie, Guohua Wu, Xiaolong Zhang, Zhongquan Li, Wencai Liu, Liang Zhang, Xin Tong, Baode Sun. Microstructural Characteristics and Mechanical Properties of Cast Mg-3Nd-3Gd-xZn-0.5Zr Alloys [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(6): 922-940. |
[3] | Xiangbin Han, Shuangbao Wang, Bo Wei, Shuai Pan, Guizhen Liao, Weizhou Li, Yuezhou Wei. Influence of Sc Addition on Precipitation Behavior and Properties of Al-Cu-Mg Alloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(6): 948-960. |
[4] | Xinzeng Liang, Jing Bai, Jianglong Gu, Ziqi Guan, Haile Yan, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. Composition-Dependent of 6 M Martensite Structure and Magnetism in Cu-Alloyed Ni-Mn-In-Co by First-Principles Calculations [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(6): 1034-1042. |
[5] | Wei Yang, Xiulian Qiu, Chengyun Wang, Jinhao Ye, Jihua Zhu, Hanbo Zou, Shengzhou Chen. Controllable Morphology Tailoring with Solvothermal Method Toward LiMnPO4/C Cathode Materials for Improved Performance and Favorable Thermostability [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 790-800. |
[6] | Minbo Wang, Ruidi Li, Tiechui Yuan, Haiou Yang, Pengda Niu, Chao Chen. Microstructure and Mechanical Properties of Selective Laser Melted Al-2.51Mn-2.71Mg-0.55Sc-0.29Cu-0.31Zn Alloy Designed by Supersaturated Solid Solution [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 354-368. |
[7] | Hui-Hu Lu, Xing-Quan Shen, Wei Liang. Effect of Grain Size on the Precipitation Behaviour in Super-Ferritic Stainless Steels During a Long-Term Ageing [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(9): 1285-1295. |
[8] | Linxu Li, Xiufang Gong, Changshuai Wang, Yunsheng Wu, Hongyao Yu, Haijun Su, Lanzhang Zhou. Correlation Between Phase Stability and Tensile Properties of the Ni-Based Superalloy MAR-M247 [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(6): 872-884. |
[9] | Jianwu Zhou, Qiangfeng Chen, Junkang Sang, Rongmin Wu, Zhuobin Li, Wanbing Guan. Conductivity and Oxidation Behavior of Fe-16Cr Alloy as Solid Oxide Fuel Cell Interconnect Under Long-Stability and Thermal Cycles [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(5): 668-674. |
[10] | Xiaohui Xi, Jinliang Wang, Liqing Chen, Zhaodong Wang. On the Microstructural Strengthening and Toughening of Heat-Affected Zone in a Low-Carbon High-Strength Cu-Bearing Steel [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(5): 617-627. |
[11] | Sihan Chen, Tian Liang, Yangtao Zhou, Weiwei Xing, Chengwu Zheng, Yingche Ma, JinMing Wu, Guobin Li, Kui Liu. Phase Characterization and Formation Behavior in 6 wt% Si High-silicon Austenitic Stainless Steel during Isothermal Aging [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(5): 649-656. |
[12] | Xiangpeng Gong, Shifang Luo, Shiyong Li, Cuilan Wu. Dislocation-Induced Precipitation and Its Strengthening of Al-Cu-Li-Mg Alloys with High Mg [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(5): 597-605. |
[13] | Miao Chen, Wu Qin, Yixuan Hu, Yiren Wang, Yong Jiang, Xiaosong Zhou, Shuming Peng, Yibei Fu. Prediction on Phase Stabilities of the Zr-H System from the First-Principles [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 514-522. |
[14] | Zhenzhe Li, Shuhao Xiao, Jiawei Liu, Xiaobin Niu, Yong Xiang, Tingshuai Li, Jun Song Chen. Highly Efficient Na+ Storage in Uniform Thorn Ball-Like α-MnSe/C Nanospheres [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(3): 373-382. |
[15] | Kai Yan, Huan Liu, Xiaowei Xue, Jing Bai, Honghui Chen, Shuangquan Fang, Jingjing Liu. Enhancing Mechanical Properties of Mg-6Zn Alloy by Deformation-Induced Nanoprecipitation [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 217-226. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||