Acta Metallurgica Sinica (English Letters) ›› 2022, Vol. 35 ›› Issue (6): 922-940.DOI: 10.1007/s40195-021-01315-0
Previous Articles Next Articles
He Xie1, Guohua Wu1(), Xiaolong Zhang1(
), Zhongquan Li2, Wencai Liu1, Liang Zhang1, Xin Tong1, Baode Sun1
Received:
2021-06-03
Revised:
2021-07-08
Accepted:
2021-07-25
Online:
2022-06-10
Published:
2022-06-15
Contact:
Guohua Wu,Xiaolong Zhang
About author:
Xiaolong Zhang, XLZhang1993@sjftu.edu.cnHe Xie, Guohua Wu, Xiaolong Zhang, Zhongquan Li, Wencai Liu, Liang Zhang, Xin Tong, Baode Sun. Microstructural Characteristics and Mechanical Properties of Cast Mg-3Nd-3Gd-xZn-0.5Zr Alloys[J]. Acta Metallurgica Sinica (English Letters), 2022, 35(6): 922-940.
Add to citation manager EndNote|Ris|BibTeX
Alloys | Actual compositions | |||
---|---|---|---|---|
Nd (wt%) | Gd (wt%) | Zn (wt%) | Zr (wt%) | |
Base | 3.05 | 3.08 | - | 0.43 |
0.5Zn | 3.01 | 3.04 | 0.48 | 0.42 |
0.8Zn | 2.99 | 3.06 | 0.79 | 0.42 |
1Zn | 3.08 | 3.10 | 1.05 | 0.46 |
Table 1 Actual chemical compositions of cast Mg-3Nd-3Gd-xZn-0.5Zr (x = 0, 0.5, 0.8, 1.0 wt%) alloys
Alloys | Actual compositions | |||
---|---|---|---|---|
Nd (wt%) | Gd (wt%) | Zn (wt%) | Zr (wt%) | |
Base | 3.05 | 3.08 | - | 0.43 |
0.5Zn | 3.01 | 3.04 | 0.48 | 0.42 |
0.8Zn | 2.99 | 3.06 | 0.79 | 0.42 |
1Zn | 3.08 | 3.10 | 1.05 | 0.46 |
Fig. 2 SEM micrographs showing the morphology of secondary phases: a base alloy, b 0.5Zn alloy, c 0.8Zn alloy, d 1Zn alloy. The positions for EDS point analysis are indicated by arrows
Alloy | Point | Atomic percentage (at.%) | ||||
---|---|---|---|---|---|---|
Mg | Nd | Gd | Zn | Zr | ||
Base | A | 92.80 | 6.14 | 1.06 | 0.00 | 0.00 |
0.5Zn | B | 81.95 | 5.85 | 2.92 | 9.28 | 0.00 |
0.8Zn | C | 74.80 | 8.20 | 3.20 | 13.80 | 0.00 |
1Zn | D | 71.86 | 8.18 | 2.43 | 17.53 | 0.00 |
Table 2 EDS point analysis results of the secondary phases in as-cast alloys
Alloy | Point | Atomic percentage (at.%) | ||||
---|---|---|---|---|---|---|
Mg | Nd | Gd | Zn | Zr | ||
Base | A | 92.80 | 6.14 | 1.06 | 0.00 | 0.00 |
0.5Zn | B | 81.95 | 5.85 | 2.92 | 9.28 | 0.00 |
0.8Zn | C | 74.80 | 8.20 | 3.20 | 13.80 | 0.00 |
1Zn | D | 71.86 | 8.18 | 2.43 | 17.53 | 0.00 |
Fig. 4 Microstructure of as-quenched alloys: a base alloy, b 0.5Zn alloy, c 0.8Zn alloy, d 1Zn alloy. Note that patches with rosette-like shapes appear in the Zn-containing alloys (marked by the arrows)
Fig. 5 Backscattered SEM micrographs illustrating the presence of cuboid-shaped phases and Zn-Zr particles in as-quenched alloys: a base alloy, b 0.5Zn alloy, c 0.8Zn alloy, d 1Zn alloy
Fig. 7 a HAADF-STEM image showing Zn-Zr particles with different morphologies in the as-quenched 1Zn alloy; b enlarged image corresponding to the region marked by the dotted frame in a; elements map-scanning of c Nd; d Gd; e Zn, f Zr
Fig. 9 BF images showing the morphology and the distribution of β’’ precipitates in the base alloy subjected to peak-aged treatment. The electron beam is parallel to [0001]α in a, b, and [${2}\stackrel{-}{1}\stackrel{-}{1}{\text{0}}$]α in c, d. The corresponding SAED patterns are inserted in a, c
Fig. 10 TEM micrographs showing precipitate microstructure representative of the peak-aged 0.5Zn alloy: a, b BF images recorded parallel to [0001]Mg direction; c, d BF images recorded parallel to [${2}\stackrel{-}{1}\stackrel{-}{1}{\text{0}}$]Mg direction
Fig. 11 HADDF-STEM images showing the precipitates interaction between β1 and β’’ in the peak-aged 0.5Zn alloy. The magnified region in a, b shows the identical structure of β’’ and β1, respectively. The electron beam is parallel to [0001]Mg direction
Fig. 12 BF micrographs showing the precipitates in sample of 0.8Zn alloy peak-aged at 200 °C: a, b BF micrographs with the incident beam direction of [0001]α, demonstrating the distribution of β1 precipitates; c, d BF micrographs exhibiting the coexistence of prismatic β1 plates and scanty basal plates (B = [${2}\stackrel{-}{1}\stackrel{-}{1}{\text{0}}$]α)
Fig. 13 BF micrographs showing the precipitate microstructure in sample of the 1Zn alloy peak-aged at 200 °C: a, b BF micrographs with the incident beam direction of [0001]α, demonstrating the distribution of β1 precipitates; c, d BF micrographs exhibiting the dense dispersion of basal plates (B = [${2}\stackrel{-}{1}\stackrel{-}{1}{\text{0}}$]α)
Fig. 14 Typical engineering strain-stress curves (left column) and mechanical properties (right column) of Mg-3Nd-3Gd-xZn-0.5Zr alloys under different states: a, b as-cast; c, d as-quenched; e, f peak-aged
Fig. 15 a HAADF-STEM micrograph of the heat-treated 1Zn alloy (peak-aged at 200 °C for 16 h) illustrating a unique interaction between the globular Zn-Zr particle and β1 precipitate, taken along the [0001]α zone axis; elemental maps of b Mg; c Nd; d Gd; e Zn, f Zr correspond to the a
Fig. 16 a HAADF-STEM micrograph of the heat-treated 1Zn alloy (peak-aged at 200 °C for 16 h) illustrating the unique interaction between rod-like Zn-Zr particles and β1 precipitate, taken along the [0001]α zone axis; elemental maps showing the distribution of b Mg; c Nd; d Gd; e Zn, f Zr
Condition | Precipitates after aging at 200 °C | |||
---|---|---|---|---|
Base | 0.5Zn | 0.8Zn | 1Zn | |
Peak-aged | β′′ | β′′, β1 | β1, basal plates | β1, basal plates |
Table 3 Primary precipitates in the peak-aged alloys
Condition | Precipitates after aging at 200 °C | |||
---|---|---|---|---|
Base | 0.5Zn | 0.8Zn | 1Zn | |
Peak-aged | β′′ | β′′, β1 | β1, basal plates | β1, basal plates |
Alloys | Base | 0.5Zn | 0.8Zn | 1Zn |
---|---|---|---|---|
YSpeak-aged-YSas-quenched (△YS, MPa) | 45 | 69 | 54 | 58 |
UTSpeak-aged-UTSas-quenched (△UTS, MPa) | 106 | 82 | 56 | 52 |
ELpeak-aged-ELas-quenched (△EL, %) | - 5.6 | - 8.0 | - 10.7 | - 10.1 |
Table 4 Comparison of strengthening effects of precipitate microstructures in different peak-aged alloys
Alloys | Base | 0.5Zn | 0.8Zn | 1Zn |
---|---|---|---|---|
YSpeak-aged-YSas-quenched (△YS, MPa) | 45 | 69 | 54 | 58 |
UTSpeak-aged-UTSas-quenched (△UTS, MPa) | 106 | 82 | 56 | 52 |
ELpeak-aged-ELas-quenched (△EL, %) | - 5.6 | - 8.0 | - 10.7 | - 10.1 |
Base alloy | 0.5Zn alloy | 0.8Zn alloy | 1Zn alloy | |
---|---|---|---|---|
Area number density of prismatic precipitates (m-2) | 8.32 × 1015 | 9.24 × 1015 | 3.66 × 1014 | 2.63 × 1014 |
Area number density of basal precipitates (m-2) | - | - | 1.03 × 1013 | 2.82 × 1015 |
Table 5 Measured area number density of prismatic precipitates and basal precipitates in peak-aged alloys
Base alloy | 0.5Zn alloy | 0.8Zn alloy | 1Zn alloy | |
---|---|---|---|---|
Area number density of prismatic precipitates (m-2) | 8.32 × 1015 | 9.24 × 1015 | 3.66 × 1014 | 2.63 × 1014 |
Area number density of basal precipitates (m-2) | - | - | 1.03 × 1013 | 2.82 × 1015 |
[1] | L.L. Rokhlin (ed.), Magnesium Alloys Containing Rare Earth Metals (CRC Press, London, |
[2] | L.Y. Jia, W.B. Du, J.L. Fu, Z.H. Wang, K. Liu, S.B. Li, X. Du, Acta Metall. Sin. Engl. Lett. 34, 39 (2020). |
[3] | J.L. Li, N. Zhang, X.X. Wang, D. Wu, R.S. Chen, Acta Metall. Sin. Engl. Lett. 31, 189 (2017). |
[4] | J. Kubásek, D. Dvorský, J. Veselý, P. Minárik, M. Zemková, D. Vojtěch, Acta Metall. Sin. Engl. Lett. 32, 321 (2018). |
[5] | R.G. Li, F. Asghar, J.H. Zhang, G.Y. Fu, Q. Liu, B.T. Guo, Y.M. Yu, S.G. Guo, Y. Su, X.J. Chen, L. Zong, Acta Metall. Sin. Engl. Lett. 32, 245 (2018). |
[6] | B. Li, B.G. Teng, D.G. Luo, Acta Metall. Sin. Engl. Lett. 31, 1009 (2018). |
[7] | S. DeWitt, E.L.S. Solomon, A.R. Natarajan, V. Araullo-Peters, S. Rudraraju, L.K. Aagesen, B. Puchala, E.A. Marquis, A. van der Ven, K. Thornton, J.E. Allison, Acta Mater. 136, 378 (2017). |
[8] | H. Liu, Y.M. Zhu, N.C. Wilson, J.F. Nie, Acta Mater. 133, 408 (2017). |
[9] | E. L.S. Solomon, V. Araullo-Peters, J.E. Allison, E.A. Marquis, Scr. Mater. 128, 14 (2017). |
[10] | W.H. Wang, D. Wu, R.S. Chen, X.N. Zhang J. Mater. Sci. Technol. 34, 1236 (2018). |
[11] | X. Xia, A. Sanaty-Zadeh, C. Zhang, A.A. Luo, D.S. Stone, Calphad 60, 58 (2018). |
[12] | H. Xie, G. Wu, X. Zhang, W. Liu, W. Ding, Mater. Charact. 175, 111076 (2021). |
[13] | T. Honma, T. Ohkubo, S. Kamado, K. Hono, Acta Mater. 55, 4137 (2007). |
[14] | Y.Q. Chi, C. Xu, X.G. Qiao, M.Y. Zheng, J. Alloys Compd. 789, 416 (2019). |
[15] | J.F. Nie, K. Oh-ishi, X. Gao, K. Hono, Acta Mater. 56, 6061 (2008). |
[16] | W. Rong, Y. Wu, Y. Zhang, M. Sun, J. Chen, L. Peng, W. Ding, Mater. Charact. 126, 1 (2017). |
[17] | K. Hagihara, A. Kinoshita, Y. Sugino, M. Yamasaki, Y. Kawamura, H.Y. Yasuda, Y. Umakoshi, Acta Mater. 58, 6282 (2010). |
[18] | G. Garcés, G. Requena, D. Tolnai, P. Pérez, P. Adeva, A. Stark, N. Schell, J. Mater. Sci. 49, 2714 (2014). |
[19] | L.S. Wang, J.H. Jiang, B. Saleh, Q.Y. Xie, Q. Xu, H. Liu, A.B. Ma, Acta Metall. Sin. Engl. Lett. 33, 1180 (2020). |
[20] | Y. Xu, D. Xu, X. Shao, E.H. Han, Acta Metall. Sin. Engl. Lett. 26, 217 (2013). |
[21] | Y. Zhou, P. Fu, L. Peng, D. Wang, Y. Wang, B. Hu, M. Liu, A.K. Sachdev, W. Ding, J. Magnes. Alloy. 7, 113 (2019). |
[22] | G. Jia, E. Guo, L. Wang, Y. Feng, Y. Chen, Results Phys. 11, 152 (2018). |
[23] | X. Gao, B.C. Muddle, J.F. Nie, Philos. Mag. Lett. 89, 33 (2009). |
[24] | J.F. Nie, Metall. Mater. Trans. A 43, 3891 (2012). |
[25] | J. Tan, Y. Dong, H.X. Zhang, Y.H. Sun, B.Z. Sun, Y. Qi, Scr. Mater. 172, 130 (2019). |
[26] | Y. Zhang, W. Rong, Y. Wu, L. Peng, J.F. Nie, N. Birbilis, J. Alloys Compd. 777, 531 (2019). |
[27] | D. Zhang, Q. Yang, B. Li, K. Guan, N. Wang, B. Jiang, C. Sun, D. Zhang, X. Li, Z. Cao, J. Meng, J. Alloys Compd. 805, 811 (2019). |
[28] | W.Z. Wang, D. Wu, R.S. Chen, Y. Qi, H.Q. Ye, Z.Q. Yang, , J. Alloys Compd. 832, 155 (2020). |
[29] | H.M. Zhu, G. Sha, J.W. Liu, H.W. Liu, C.L. Wu, C.P. Luo, Z.W. Liu, R.K. Zheng, S.P. Ringer, Nanoscale Res. Lett. 7, 300 (2012). |
[30] | H. Xie, G. Wu, X. Zhang, J. Zhang, W. Ding, Mater. Sci. Eng. A 817, 141292 (2021). |
[31] | J.F. Nie, B.C. Muddle, Acta Mater. 48, 1691 (2000). |
[32] | D. Wang, P. Fu, L. Peng, Y. Wang, W. Ding, Mater. Charact. 153, 157 (2019). |
[33] | X. Gao, J.F. Nie Scr. Mater. 58, 619 (2008). |
[34] | I. Toda-Caraballo, E.I. Galindo-Nava, P. E.J. Rivera-Díaz-del-Castillo, Acta Mater. 75, 287 (2014). |
[35] | Z.M. Li, A.A. Luo, Q.G. Wang, L.M. Peng, P.H. Fu, G.H. Wu, Mater. Sci. Eng. A 564, 450 (2013). |
[36] | D. Zhang, D. Zhang, F. Bu, X. Li, B. Li, T. Yan, K. Guan, Q. Yang, X. Liu, J. Meng, J. Alloys Compd. 728, 404 (2017). |
[37] | H.S. Jang, B.J. Lee Scr. Mater. 160, 39 (2019). |
[38] | D.H. Ping, K. Hono, J.F. Nie, Scr. Mater. 48, 1017 (2003). |
[39] | E. L.S. Solomon, E.A. Marquis, Mater. Lett. 216, 67 (2018). |
[40] | Z. Huang, C. Yang, L. Qi, J.E. Allison, A. Misra, Mater. Sci. Eng. A 742, 278 (2019). |
[41] | J.F. Nie, X. Gao, S.M. Zhu Scr. Mater. 53, 1049 (2005). |
[1] | Shuang Shao, Yong Liu, Chun-Shui Xu, Ying-Xuan Xu, Bin Wu, Xiao-Shu Zeng, Xian-Feng Lu, Xiang-Jie Yang. Effects of Cooling Rate and Component on the Microstructure and Mechanical Properties of Mg-Zn-Y Alloys [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(1): 7-14. |
[2] | Junxia Lü, Wuxiong Yang, Shikai Wu, Xudong Zhao, Rongshi Xiao. Microstructure and Mechanical Properties of Galvanized Steel/AA6061 Joints by Laser Fusion Brazing Welding [J]. Acta Metallurgica Sinica (English Letters), 2014, 27(4): 670-676. |
[3] | Qingguo Hao, Ying Wang, Xiaoshuai Jia, Xunwei Zuo, Nailu Chen, Yonghua Rong. Dynamic Compression Behavior and Microstructure of a Novel Low-Carbon Quenching-Partitioning-Tempering Steel [J]. Acta Metallurgica Sinica (English Letters), 2014, 27(3): 444-451. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||