Acta Metallurgica Sinica (English Letters) ›› 2022, Vol. 35 ›› Issue (7): 1103-1116.DOI: 10.1007/s40195-021-01338-7
Previous Articles Next Articles
Xiaogang Li1,2, Qu Liu1,2, Shanlin Li1,2, Yu Zhang1,2, Zhipeng Cai1,2,3,4, Kejian Li1,2(), Jiluan Pan1,2
Received:
2021-07-05
Revised:
2021-08-06
Accepted:
2021-08-17
Online:
2022-07-10
Published:
2021-11-01
Contact:
Kejian Li
About author:
Kejian Li, kejianli@mail.tsinghua.edu.cnXiaogang Li, Qu Liu, Shanlin Li, Yu Zhang, Zhipeng Cai, Kejian Li, Jiluan Pan. Oxidation Behaviors of Different Grades of Ferritic Heat Resistant Steels in High-Temperature Steam and Flue Gas Environments[J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1103-1116.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 Cross-sectional structures of the oxide scale of G102 after exposure in high-temperature steam: a BSE image; b-f EBSD analysis results, located in the red box in (a). IQ map, IPF + IQ map, phase + IQ map, boundary figure (BF) + IQ map and kernel average misorientation (KAM) + IQ map were revealed by EBSD with 0.5 μm step size
Fig. 2 Chemical compositional analyses of the oxide scale of G102 after exposure in high-temperature steam: a SEM and corresponding EDX mapping images, located in the red box in Fig. 1a; b chemical composition profile across the oxide scale, obtained by EPMA. The space between adjacent EMPA quantitative positions was 6 μm
Fig. 3 Morphology, structure and chemical composition at the oxide layer-matrix interface of G102 after exposure in high-temperature steam: a SEM image; b EPMA of the interested points; c EBSD analysis; d EDX mapping images. The analysis location was in the blue box in Fig. 2a and the step for EBSD was 0.35 μm
Fig. 4 Chemical composition profile across the matrix, internal oxidation zone and inner oxide layer of G102 after exposure in high-temperature steam, obtained by EPMA. The space between adjacent EMPA quantitative positions was 2 μm
Fig. 5 Cross-sectional structures of the oxide scale of T91 after exposure in high-temperature steam: a BSE image; b-f EBSD analysis results, located in the red box in (a). The step for EBSD was 0.4 μm
Fig. 6 Chemical compositional analyses of the oxide scale of T91 after exposure in high-temperature steam: a SEM and corresponding EDX mapping images, located in the blue box in Fig. 5b; b chemical composition profile across the oxide scale, obtained by EPMA. The space between adjacent EMPA quantitative positions was 6 μm
Fig. 7 Morphology, structure and chemical composition at the oxide layer-matrix interface of T91 after exposure in high-temperature steam: a SEM image; b EBSD analysis; c EDX mapping images; d EPMA of the interested points. The analysis location was in the blue box in Fig. 6a and the step for EBSD was 0.15 μm
Fig. 8 Chemical composition profile across the matrix, internal oxidation zone and inner oxide layer of T91 after exposure in high-temperature steam, obtained by EPMA. The space between adjacent EMPA quantitative positions was 2 μm
Fig. 9 Chemical compositional analyses of the oxide scale of G102 after exposure in high-temperature flue gas: a SEM and corresponding EDX mapping images; b chemical composition profile across the oxide scale, obtained by EPMA. The space between adjacent EMPA quantitative positions was 6 μm
Fig. 10 Morphology, structure and chemical composition at the oxide layer-matrix interface of G102 after exposure in high-temperature flue gas: a SEM image; b EPMA of the interested points; c EBSD analysis; d EDX mapping images. The analysis location was in the blue box in Fig. 9a and the step for EBSD was 0.28 μm
Fig. 11 Chemical composition profile across the matrix, internal oxidation zone and inner oxide layer of G102 after exposure in high-temperature flue gas, obtained by EPMA. The space between adjacent EMPA quantitative positions was 2 μm
Fig. 13 Structure and chemical composition at the oxide layer-matrix interface of T91 after exposure in high-temperature flue gas: a-e EBSD analysis results; f EPMA of the interested points. The step for EBSD was 0.15 μm
Material | Location | Environment | Oxide thickness (μm) | |||
---|---|---|---|---|---|---|
Oxide layer containing coal combustion products | Outer oxide layer | Inner oxide layer | Internal oxidation zone | |||
G102 | Inner wall | Steam | - | 143 | 98 | 15 |
Outer wall | flue gas | 60 | 72 | 58 | 22 | |
T91 | Inner wall | Steam | - | 58 | 54 | 4 |
Outer wall | flue gas | 50 | - | 60 | 15 |
Table 1 Summary of the oxide characteristics of G102 and T91
Material | Location | Environment | Oxide thickness (μm) | |||
---|---|---|---|---|---|---|
Oxide layer containing coal combustion products | Outer oxide layer | Inner oxide layer | Internal oxidation zone | |||
G102 | Inner wall | Steam | - | 143 | 98 | 15 |
Outer wall | flue gas | 60 | 72 | 58 | 22 | |
T91 | Inner wall | Steam | - | 58 | 54 | 4 |
Outer wall | flue gas | 50 | - | 60 | 15 |
[1] |
F. Masuyama, ISIJ Int. 41, 612 (2001)
DOI URL |
[2] |
R. Viswanathan, J.F. Henry, J. Tanzosh, G. Stanko, J. Shingledecker, B. Vitalis, R. Purgert, J. Mater. Eng. Perform. 14, 281 (2005)
DOI URL |
[3] | M. Tabuchi, H. Hongo, Acta Metall. Sin. -Engl. Lett. 24, 225 (2011) |
[4] |
R. Viswanathan, W. Bakker, J. Mater. Eng. Perform. 10, 81 (2001)
DOI URL |
[5] |
D. Laverde, T. Gómez-Acebo, F. Castro, Corros. Sci. 46, 613 (2004)
DOI URL |
[6] |
J.C. Vaillant, B. Vandenberghe, B. Hahn, H. Heuser, C. Jochum, Int. J. Pres. Ves. Pip. 85, 38 (2008)
DOI URL |
[7] | F. Abe, J. Press. Vess-T. ASME 138, 040804 (2016). |
[8] |
X. Li, K. Li, Z. Cai, J. Pan, Metals 9,1233 (2019)
DOI URL |
[9] |
J.N. DuPont, Int. Mater. Rev. 57, 208 (2012)
DOI URL |
[10] |
I.G. Wright, R.B. Dooley, Int. Mater. Rev. 55, 129 (2010)
DOI URL |
[11] |
N. Otsuka, Oxid. Met. 80, 565 (2013)
DOI URL |
[12] |
K. Chandra, A. Kranzmann, R.S. Neumann, F. Rizzo, Oxid. Met. 84, 463 (2015)
DOI URL |
[13] |
K. Chandra, A. Kranzmann, R. Saliwan Neumann, G. Oder, F. Rizzo, Oxid. Met. 83, 291 (2014).
DOI URL |
[14] |
A. Järdnäs, J.-E. Svensson, L.-G. Johansson, Oxid. Met. 69, 249 (2008)
DOI URL |
[15] |
Y. Xie, J. Zhang, D.J. Young, Corros. Sci. 136, 311 (2018)
DOI URL |
[16] | I.G. Wright, P.F. Tortorelli, M. Schiitze, EPRI report No. 1013666, (2007). |
[17] |
J. Bugge, S. Kjær, R. Blum, Energy 31,1437 (2006)
DOI URL |
[18] | H. Kimura, T. Sato, C. Bergins, S. Imano, E. Saito, Hitachi Rev. 60, 365 (2011) |
[19] |
X. Li, K. Li, S. Li, Y. Wu, Z. Cai, J. Pan, J. Mater. Sci. Technol. 39, 173 (2020)
DOI URL |
[20] |
R. Viswanathan, J. Saver, J.M. Tanzosh, J. Mater. Eng. Perform. 15, 255 (2006)
DOI URL |
[21] |
F. Abe, Sci. Technol. Adv. Mater. 9, 013002 (2008).
DOI URL |
[22] |
J. Bischoff, A.T. Motta, C. Eichfeld, R.J. Comstock, G. Cao, T.R. Allen, J. Nucl. Mater. 441, 604 (2013)
DOI URL |
[23] | C. Liu, T. Shen, C. Yao, H. Chang, K. Wei, L. Niu, Z. Ma, Z. Wang, Corros. Sci. 187 (2021). |
[24] | T. Sundararajan, S. Kuroda, J. Kawakita, S. Seal, Surf. Coat. Technol. 201, 2124 (2006) |
[25] |
N.J. Cory, T.M. Herrington, Oxid Met. 28, 237 (1987)
DOI URL |
[26] | Y.S. Yi, Y. Watanabe, T. Kondo, H. Kimura, M. Sato, J. Press. Vessel Technol. 123, 391 (2001) |
[27] |
T. Sumida, T. Ikuno, N. Otsuka, T. Saburi, Mater. Trans. JIM 36, 1372 (1995)
DOI URL |
[28] | J.C. Griess, J.M. Devan, W.A. Maxwell, Mater. Perform. 17, 9 (1978) |
[29] |
T. Ishitsuka, Y. Inoue, H. Ogawa, Oxid. Met. 61, 125 (2004)
DOI URL |
[30] |
M.R. Taylor, J.M. Calvert, D.G. Lees, D.B. Meadowcroft, Oxid. Met. 14, 499 (1980)
DOI URL |
[31] |
J. Robertson, Corros. Sci. 29, 1275 (1989)
DOI URL |
[32] | G. Liu, Yu. Xu, C. Yang, X. Xiao, X. Chen, X. Zhang, X. Meng, Acta Metall. Sin. -Engl. Lett. 28, 129 (2015) |
[33] |
K. Chandra, I. Dörfel, N. Wollschläger, A. Kranzmann, Corros. Sci. 148, 94 (2019)
DOI |
[34] |
Z.L. Zhu, H. Xu, D.F. Jiang, X.P. Mao, N.Q. Zhang, Corros. Sci. 113, 172 (2016)
DOI URL |
[35] |
X.Y. Zhong, F. Hamdani, J. Xu, T. Shoji, T. Tatsuki, J. Morii, W. Sasaki, Y. Ishii, Corros. Sci. 167, 108516 (2020).
DOI URL |
[36] |
L. Martinelli, C. Desgranges, F. Rouillard, K. Ginestar, M. Tabarant, K. Rousseau, Corros. Sci. 100, 253 (2015)
DOI URL |
[37] | R.I.Taylor Atkinson, High Temp. High Pressures 14, 571 (1982). |
[38] |
A.M. Pritchard, N.E.W. Hartley, J.F. Singleton, A.E. Truswell, Corros. Sci. 20, 1 (1980)
DOI URL |
[39] |
G.B. Gibbs, R. Hales, Corros. Sci. 17, 487 (1977)
DOI URL |
[40] |
M. Montgomery, S.A. Jensen, F. Rasmussen, T. Vilhelmsen, Corros. Eng. Sci. Technol. 44, 196 (2009)
DOI URL |
[41] |
S. R.J. Saunders, M. Monteiro, F. Rizzo, Prog. Mater. Sci. 53, 775 (2008)
DOI URL |
[42] |
G.S. Was, P. Ampornrat, G. Gupta, S. Teysseyre, E.A. West, T.R. Allen, K. Sridharan, L. Tan, Y. Chen, X. Ren, C. Pister, J. Nucl. Mater. 371, 176 (2007)
DOI URL |
[43] |
B.M. Capell, G.S. Was, Metall. Mater. Trans. A 38, 1244 (2007)
DOI URL |
[44] |
Y. Liu, S. Liu, X.P. Su, H.P. Peng, J.H. Wang, H. Tu, J. Phase Equilib. Diff. 34, 82 (2013)
DOI URL |
[45] |
V. Mazanova, M. Heczko, J. Polak, Int. J. Fatigue 114,11 (2018)
DOI URL |
[46] |
L. Tan, X. Ren, T.R. Allen, Corros. Sci. 52, 1520 (2010)
DOI URL |
[47] |
J. Bischoff, A.T. Motta, J. Nucl. Mater. 430, 171 (2012)
DOI URL |
[48] |
J. Bischoff, A.T. Motta, J. Nucl. Mater. 424, 261 (2012)
DOI URL |
[49] | J.T. Guo, C. Shi, Acta Metall. Sin. 14, 348 (1978) (in Chinese) |
[50] | L. Zheng, X. Hu, X. Kang, D. Li, Acta Metall. Sin. -Engl. Lett. 28, 1008 (2015) |
[51] |
Y. Chen, K. Sridharan, T. Allen, Corros. Sci. 48, 2843 (2006)
DOI URL |
[52] |
K. Yin, S. Qiu, R. Tang, Q. Zhang, L. Zhang, J. Supercrit. Fluids 50, 235 (2009)
DOI URL |
[53] |
H. Xu, Z. Zhu, N. Zhang, Oxid. Met. 82, 21 (2014)
DOI URL |
[54] |
J. Yuan, X. Wu, W. Wang, S. Zhu, F. Wang, Oxid. Met. 79, 541 (2013)
DOI URL |
[55] |
N. Mortazavi, C. Geers, M. Esmaily, V. Babic, M. Sattari, K. Lindgren, P. Malmberg, B. Jönsson, M. Halvarsson, J.E. Svensson, I. Panas, Nat. Mater. 17, 610 (2018)
DOI PMID |
[1] | Fuzhao Yan, Jing Li, Yiyi Li, Liangyin Xiong, Shi Liu. Formation Mechanism of Nanoparticles in Fe-Cr-Al ODS Alloy Fabricated by Direct Oxidation Method [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(7): 963-972. |
[2] | Jing-Jing Dong, Lin Fan, Hai-Bing Zhang, Li-Kun Xu, Li-Li Xue. Electrochemical Performance of Passive Film Formed on Ti-Al-Nb-Zr Alloy in Simulated Deep Sea Environments [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(4): 595-604. |
[3] | Zheng-Bing Wang, Hong-Xiang Hu, Chun-Bo Liu, Huai-Ning Chen, Yu-Gui Zheng. Corrosion Behaviors of Pure Titanium and Its Weldment in Simulated Desulfurized Flue Gas Condensates in Thermal Power Plant Chimney [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(4): 477-486. |
[4] | K.Fujiyama. APPLICATION OF THE UNIFIED STATISTICAL MATERIAL DATABASE FOR DESIGN AND LIFE/RISK ASSESSMENT OF HIGH TEMPERATURE COMPONENTS [J]. Acta Metallurgica Sinica (English Letters), 2004, 17(4): 338-344 . |
[5] | ZHANG Dengxia MA Chenghui CAI Ming Institute of Mechanics,Academia Sinica,Beijing,ChinaAI Baoren ZHANC Jinyuan ZHU Ruizhen LIU Chunlan Central Iron and Steel Research Institute,Ministry of Metallurgical Industry,Beijing,China Associate Professor,Institute of Mechanics,Academia Sinica,Beijing 100080,China. EFFECT OF OXIDE LAYER THICKNESS OVER Al AND Al ALLOY POWDERS ON QUALITY OF THEIR EXPLOSIVE COMPACTS [J]. Acta Metallurgica Sinica (English Letters), 1993, 6(7): 25-28. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||