Acta Metallurgica Sinica (English Letters) ›› 2021, Vol. 34 ›› Issue (4): 514-522.DOI: 10.1007/s40195-020-01113-0
Previous Articles Next Articles
Miao Chen1, Wu Qin2, Yixuan Hu2, Yiren Wang2, Yong Jiang2(), Xiaosong Zhou1, Shuming Peng1(
), Yibei Fu1
Received:
2020-04-12
Revised:
2020-05-19
Accepted:
2020-06-03
Online:
2021-04-10
Published:
2021-03-30
Contact:
Yong Jiang,Shuming Peng
About author:
Shuming Peng,pengshuming@caep.cnMiao Chen, Wu Qin, Yixuan Hu, Yiren Wang, Yong Jiang, Xiaosong Zhou, Shuming Peng, Yibei Fu. Prediction on Phase Stabilities of the Zr-H System from the First-Principles[J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 514-522.
Add to citation manager EndNote|Ris|BibTeX
Hydride composition | H atom configuration | ΔEf (eV/avg atom) | a (Å) | b (Å) | c (Å) | c/a | Predicted phase |
---|---|---|---|---|---|---|---|
ZrH | adeh | - 0.417 | 4.589 | 4.589 | 5.026 | 1.095 | γ |
cdef | - 0.416 | 4.588 | 4.588 | 5.025 | 1.097 | γ | |
aefh | - 0.377 | 4.874 | 4.467 | 4.879 | 1.001 | - | |
cdfh | - 0.376 | 4.880 | 4.880 | 4.463 | 0.915 | ε | |
abfg | - 0.373 | 4.627 | 4.801 | 4.805 | 1.039 | - | |
defg | - 0.373 | 4.820 | 4.820 | 4.594 | 0.953 | ε | |
efgh | - 0.337 | 4.616 | 4.616 | 4.999 | 1.083 | γ | |
cdgh | - 0.337 | 5.000 | 4.582 | 4.648 | 0.930 | - | |
bceh | - 0.335 | 5.176 | 5.176 | 3.921 | 0.758 | ε | |
abce | - 0.323 | 5.039 | 5.039 | 4.162 | 0.826 | ε | |
Expt. [ | - | 4.60 | 4.60 | 4.97 | 1.080 | γ | |
Expt. [ | - | 4.596 | 4.596 | 4.969 | 1.081 | γ | |
GGA. [ | - | 4.61 | 4.61 | 5.04 | 1.093 | γ | |
GGA. [ | - | 4.58 | 4.58 | 5.04 | 1.100 | γ | |
ZrH1.25 | bcdfg | - 0.452 | 4.624 | 4.624 | 5.036 | 1.089 | γ |
bdefg | - 0.451 | 4.635 | 4.635 | 5.014 | 1.082 | γ | |
defgh | - 0.420 | 4.699 | 4.699 | 4.919 | 1.047 | γ | |
bdefh | - 0.420 | 4.644 | 4.913 | 4.760 | 1.025 | - | |
adefg | - 0.413 | 4.739 | 4.739 | 4.861 | 1.026 | γ | |
GGA [ | - | 4.79 | 4.79 | 5.20 | 1.086 | γ | |
ZrH1.5 | acdefh | - 0.494 | 5.024 | 5.024 | 4.290 | 0.854 | ε |
abcdef | - 0.487 | 4.778 | 4.806 | 4.786 | 1.002 | - | |
bcdfgh | - 0.486 | 4.778 | 4.778 | 4.815 | 1.008 | γ | |
abcefh | - 0.483 | 4.893 | 4.667 | 4.815 | 0.984 | - | |
bcefgh | - 0.483 | 4.744 | 4.744 | 4.888 | 1.030 | γ | |
Expt. [ | - | 4.65 | 4.65 | 4.96 | 1.067 | γ | |
GGA [ | - | 4.62 | 4.62 | 4.83 | 1.046 | γ | |
GGA [ | - | 5.03 | 5.03 | 4.28 | 0.851 | ε | |
GGA [ | - | 4.61 | 4.61 | 5.14 | 1.115 | γ | |
ZrH1.75 | abcdefg | - 0.525 | 4.936 | 4.936 | 4.545 | 0.921 | ε |
Expt. [ | - | 4.91 | 4.91 | 4.52 | 0.921 | ε | |
GGA [ | - | 4.97 | 4.97 | 4.47 | 0.899 | ε | |
ZrH2 | abcdefgh | - 0.556 | 5.006 | 5.006 | 4.439 | 0.887 | ε |
Expt. [ | - | 4.980 | 4.980 | 4.430 | 0.890 | ε | |
Expt. [ | - | 4.983 | 4.983 | 4.449 | 0.893 | ε | |
GGA [ | - | 5.000 | 5.000 | 4.450 | 0.890 | ε | |
GGA [ | - | 5.020 | 5.020 | 4.430 | 0.882 | ε |
Table 1 Predicted lattice constants, formation energies and phase types for ZrHx with various different H-atom configurations
Hydride composition | H atom configuration | ΔEf (eV/avg atom) | a (Å) | b (Å) | c (Å) | c/a | Predicted phase |
---|---|---|---|---|---|---|---|
ZrH | adeh | - 0.417 | 4.589 | 4.589 | 5.026 | 1.095 | γ |
cdef | - 0.416 | 4.588 | 4.588 | 5.025 | 1.097 | γ | |
aefh | - 0.377 | 4.874 | 4.467 | 4.879 | 1.001 | - | |
cdfh | - 0.376 | 4.880 | 4.880 | 4.463 | 0.915 | ε | |
abfg | - 0.373 | 4.627 | 4.801 | 4.805 | 1.039 | - | |
defg | - 0.373 | 4.820 | 4.820 | 4.594 | 0.953 | ε | |
efgh | - 0.337 | 4.616 | 4.616 | 4.999 | 1.083 | γ | |
cdgh | - 0.337 | 5.000 | 4.582 | 4.648 | 0.930 | - | |
bceh | - 0.335 | 5.176 | 5.176 | 3.921 | 0.758 | ε | |
abce | - 0.323 | 5.039 | 5.039 | 4.162 | 0.826 | ε | |
Expt. [ | - | 4.60 | 4.60 | 4.97 | 1.080 | γ | |
Expt. [ | - | 4.596 | 4.596 | 4.969 | 1.081 | γ | |
GGA. [ | - | 4.61 | 4.61 | 5.04 | 1.093 | γ | |
GGA. [ | - | 4.58 | 4.58 | 5.04 | 1.100 | γ | |
ZrH1.25 | bcdfg | - 0.452 | 4.624 | 4.624 | 5.036 | 1.089 | γ |
bdefg | - 0.451 | 4.635 | 4.635 | 5.014 | 1.082 | γ | |
defgh | - 0.420 | 4.699 | 4.699 | 4.919 | 1.047 | γ | |
bdefh | - 0.420 | 4.644 | 4.913 | 4.760 | 1.025 | - | |
adefg | - 0.413 | 4.739 | 4.739 | 4.861 | 1.026 | γ | |
GGA [ | - | 4.79 | 4.79 | 5.20 | 1.086 | γ | |
ZrH1.5 | acdefh | - 0.494 | 5.024 | 5.024 | 4.290 | 0.854 | ε |
abcdef | - 0.487 | 4.778 | 4.806 | 4.786 | 1.002 | - | |
bcdfgh | - 0.486 | 4.778 | 4.778 | 4.815 | 1.008 | γ | |
abcefh | - 0.483 | 4.893 | 4.667 | 4.815 | 0.984 | - | |
bcefgh | - 0.483 | 4.744 | 4.744 | 4.888 | 1.030 | γ | |
Expt. [ | - | 4.65 | 4.65 | 4.96 | 1.067 | γ | |
GGA [ | - | 4.62 | 4.62 | 4.83 | 1.046 | γ | |
GGA [ | - | 5.03 | 5.03 | 4.28 | 0.851 | ε | |
GGA [ | - | 4.61 | 4.61 | 5.14 | 1.115 | γ | |
ZrH1.75 | abcdefg | - 0.525 | 4.936 | 4.936 | 4.545 | 0.921 | ε |
Expt. [ | - | 4.91 | 4.91 | 4.52 | 0.921 | ε | |
GGA [ | - | 4.97 | 4.97 | 4.47 | 0.899 | ε | |
ZrH2 | abcdefgh | - 0.556 | 5.006 | 5.006 | 4.439 | 0.887 | ε |
Expt. [ | - | 4.980 | 4.980 | 4.430 | 0.890 | ε | |
Expt. [ | - | 4.983 | 4.983 | 4.449 | 0.893 | ε | |
GGA [ | - | 5.000 | 5.000 | 4.450 | 0.890 | ε | |
GGA [ | - | 5.020 | 5.020 | 4.430 | 0.882 | ε |
Hydride composition | H-atom configuration | Phase | Cij (GPa) | |||||
---|---|---|---|---|---|---|---|---|
C11 | C12 | C44 | C13 | C33 | C66 | |||
ZrH | adeh (γ) | γ | 117.81 | 120.22 | 45.58 | 95.14 | 176.23 | 55.04 |
ε | 132.41 | 107.72 | 63.82 | 115.24 | 83.15 | 35.24 | ||
δ | 113.73 | 109.53 | 54.80 | |||||
cdef (γ) | γ | 118.06 | 95.87 | 45.75 | 120.66 | 118.06 | 55.23 | |
δ | 113.71 | 113.51 | 54.85 | |||||
cdfh (ε) | ε | 143.94 | 105.30 | 69.91 | 106.16 | 106.16 | 55.25 | |
δ | 114.60 | 106.37 | 57.07 | |||||
bceh (ε) | ε | 184.29 | 100.00 | 63.07 | 96.37 | 103.40 | 29.92 | |
γ | 99.72 | 120.35 | 67.51 | 111.83 | 144.27 | 81.64 | ||
δ | 113.32 | 116.19 | 78.56 | |||||
defg (ε) | ε | 136.62 | 101.07 | 70.05 | 109.56 | 109.60 | 55.07 | |
δ | 122.45 | 103.79 | 67.52 | |||||
ZrH1.25 | bcdfg (γ) | γ | 116.90 | 122.68 | 55.74 | 109.89 | 165.97 | 55.74 |
ε | 133.03 | 109.88 | 62.76 | 120.12 | 100.20 | 48.20 | ||
δ | 114.48 | 114.96 | 52.93 | |||||
bdefg (γ) | γ* | 166.52 | 108.89 | 53.70 | 108.89 | 117.05 | 55.65 | |
δ | 127.48 | 117.88 | 57.92 | |||||
defgh (γ) | γ | 130.32 | 117.98 | 76.22 | 104.60 | 104.60 | 80.56 | |
ε* | 164.63 | 100.89 | 78.98 | 111.51 | 92.69 | 46.78 | ||
δ | 133.07 | 102.82 | 79.07 | |||||
adefg (γ) | γ | 119.01 | 120.80 | 66.64 | 114.86 | 136.41 | 73.00 | |
ε* | 156.77 | 106.17 | 71.30 | 116.95 | 92.20 | 92.20 | ||
δ | 124.55 | 117.07 | 69.20 | |||||
ZrH1.5 | acdefh (ε) | ε | 162.59 | 131.70 | 55.47 | 104.24 | 114.96 | 38.66 |
γ | 112.32 | 132.00 | 40.43 | 114.36 | 166.18 | 52.07 | ||
δ | 106.80 | 130.43 | 34.99 | |||||
bcefgh (γ) | γ | 127.01 | 123.83 | 58.42 | 118.89 | 154.73 | 60.66 | |
δ | 119.11 | 117.76 | 55.98 | |||||
bcdfgh (γ) | γ | 137.47 | 117.48 | 68.44 | 116.23 | 152.49 | 72.71 | |
δ | 117.57 | 121.60 | 55.76 | |||||
ZrH1.75 | abcdefg (ε) | ε | 149.50 | 128.09 | 46.20 | 125.02 | 125.02 | 40.05 |
γ | 125.13 | 132.54 | 45.09 | 125.49 | 154.20 | 47.48 | ||
δ | 122.95 | 131.63 | 32.70 | |||||
ZrH2 | abcdefgh (ε) | ε | 163.88 | 146.06 | 34.85 | 112.60 | 142.05 | 52.41 |
γ | 132.00 | 141.73 | 36.92 | 119.00 | 185.79 | 34.97 | ||
δ | 113.85 | 141.78 | 12.85 | |||||
GGA [ | ε | 165.6 | 140.9 | 30.5 | 106.8 | 145.5 | 60.6 | |
γ | 125.7 | 145.5 | 30.9 | 115.0 | 190.6 | 42.0 | ||
δ | 82.6 | 159.7 | - 19.5 |
Table 2 Calculated elastic constants (Cij) for ZrHx with various possible phase structures
Hydride composition | H-atom configuration | Phase | Cij (GPa) | |||||
---|---|---|---|---|---|---|---|---|
C11 | C12 | C44 | C13 | C33 | C66 | |||
ZrH | adeh (γ) | γ | 117.81 | 120.22 | 45.58 | 95.14 | 176.23 | 55.04 |
ε | 132.41 | 107.72 | 63.82 | 115.24 | 83.15 | 35.24 | ||
δ | 113.73 | 109.53 | 54.80 | |||||
cdef (γ) | γ | 118.06 | 95.87 | 45.75 | 120.66 | 118.06 | 55.23 | |
δ | 113.71 | 113.51 | 54.85 | |||||
cdfh (ε) | ε | 143.94 | 105.30 | 69.91 | 106.16 | 106.16 | 55.25 | |
δ | 114.60 | 106.37 | 57.07 | |||||
bceh (ε) | ε | 184.29 | 100.00 | 63.07 | 96.37 | 103.40 | 29.92 | |
γ | 99.72 | 120.35 | 67.51 | 111.83 | 144.27 | 81.64 | ||
δ | 113.32 | 116.19 | 78.56 | |||||
defg (ε) | ε | 136.62 | 101.07 | 70.05 | 109.56 | 109.60 | 55.07 | |
δ | 122.45 | 103.79 | 67.52 | |||||
ZrH1.25 | bcdfg (γ) | γ | 116.90 | 122.68 | 55.74 | 109.89 | 165.97 | 55.74 |
ε | 133.03 | 109.88 | 62.76 | 120.12 | 100.20 | 48.20 | ||
δ | 114.48 | 114.96 | 52.93 | |||||
bdefg (γ) | γ* | 166.52 | 108.89 | 53.70 | 108.89 | 117.05 | 55.65 | |
δ | 127.48 | 117.88 | 57.92 | |||||
defgh (γ) | γ | 130.32 | 117.98 | 76.22 | 104.60 | 104.60 | 80.56 | |
ε* | 164.63 | 100.89 | 78.98 | 111.51 | 92.69 | 46.78 | ||
δ | 133.07 | 102.82 | 79.07 | |||||
adefg (γ) | γ | 119.01 | 120.80 | 66.64 | 114.86 | 136.41 | 73.00 | |
ε* | 156.77 | 106.17 | 71.30 | 116.95 | 92.20 | 92.20 | ||
δ | 124.55 | 117.07 | 69.20 | |||||
ZrH1.5 | acdefh (ε) | ε | 162.59 | 131.70 | 55.47 | 104.24 | 114.96 | 38.66 |
γ | 112.32 | 132.00 | 40.43 | 114.36 | 166.18 | 52.07 | ||
δ | 106.80 | 130.43 | 34.99 | |||||
bcefgh (γ) | γ | 127.01 | 123.83 | 58.42 | 118.89 | 154.73 | 60.66 | |
δ | 119.11 | 117.76 | 55.98 | |||||
bcdfgh (γ) | γ | 137.47 | 117.48 | 68.44 | 116.23 | 152.49 | 72.71 | |
δ | 117.57 | 121.60 | 55.76 | |||||
ZrH1.75 | abcdefg (ε) | ε | 149.50 | 128.09 | 46.20 | 125.02 | 125.02 | 40.05 |
γ | 125.13 | 132.54 | 45.09 | 125.49 | 154.20 | 47.48 | ||
δ | 122.95 | 131.63 | 32.70 | |||||
ZrH2 | abcdefgh (ε) | ε | 163.88 | 146.06 | 34.85 | 112.60 | 142.05 | 52.41 |
γ | 132.00 | 141.73 | 36.92 | 119.00 | 185.79 | 34.97 | ||
δ | 113.85 | 141.78 | 12.85 | |||||
GGA [ | ε | 165.6 | 140.9 | 30.5 | 106.8 | 145.5 | 60.6 | |
γ | 125.7 | 145.5 | 30.9 | 115.0 | 190.6 | 42.0 | ||
δ | 82.6 | 159.7 | - 19.5 |
Fig. 4 Calculated stable a and metastable b phase stability diagrams of ZrHx predicting the relative stabilities of various possible ZrHx phases under a given temperature and hydrogen partial pressure
[1] | P.W. Bickel, T.G. Berlincourt, Phys. Rev. B 2 4807 (1970) |
[2] |
K.B. Colas, A.T. Motta, J.D. Almer, M.R. Daymond, M. Kerr, A.D. Banchik, P. Vizcaino, J.R. Santisteban, Acta Mater. 58 6575 (2010)
DOI URL PMID |
[3] | Singh, P. Kuppusami, R. Thirumurugesan, R. Ramaseshan, M. Kamruddin, S. Dash, V. Ganesan, E. Mohandas, Appl. Surf. Sci. 257 9909 (2011) |
[4] | H.O. Pierson, ed. 4 - carbides of group IV: Titanium, zirconium, and hafnium carbides. in Handbook of Refractory Carbides and Nitrides ( William Andrew Publishing, Westwood, NJ, 1996), pp. 55-80 |
[5] | G.J. Cheng, G. Huang, M. Chen, X.S. Zhou, J.H. Liu, S.M. Peng, W. Ding, H.F. Wang, L.Q. Shi, J. Nucl. Mater. 499 490 (2018) |
[6] | C.E. Ells, J. Nucl. Mater. 28 129 (1968) |
[7] | M.P. Cassidy, C.M. Wayman, Metall. Trans. A 11 57 (1980) |
[8] |
R.C. Bowman, B.D. Craft, J. Phys. C: Solid State Phys. 17 L477 (1984)
DOI URL |
[9] | R.C. Bowman, E.L. Venturini, B.D. Craft, A. Attalla, D.B. Sullenger, Phys. Rev. B 27 1474 (1983) |
[10] | K. Niedźwiedź, B. Nowak, O.J. Żogał, J. Alloys Compd. 194 47 (1993) |
[11] | R.C. Bowman Jr., B.D. Craft, J.S. Cantrell, E.L. Venturini, Phys. Rev. B 31 5604 (1985) |
[12] | Żogal, A.H. Vuorimäki, E.E. Ylinen, K. Niedźwiedź, Z. Phys. B: Condens. Matter 96 293 (1995) |
[13] |
E. Zuzek, J.P. Abriata, A. San-Martin, F.D. Manchester, Bull. Alloy Phase Diagr 11 385 (1990)
DOI URL |
[14] | Aladjem , Solid State Phenom. 49-50 281 (1996) |
[15] | J.S. Cantrell, R.C. Bowman Jr., D.B. Sullenger, J. Phys. Chem. 88 918 (1984) |
[16] | J.H. Weaver, D.J. Peterman, D.T. Peterson, A. Franciosi, Phys. Rev. B 23 1692 (1981) |
[17] | B.W. Veal, D.J. Lam, D.G. Westlake, Phys. Rev. B 19 2856 (1979) |
[18] | K.G. Barraclough, C.J. Beevers, J. Nucl. Mater. 34 125 (1970) |
[19] | D.O. Northwood, U. Kosasih, Int. Mater. Rev. 28 92 (1983) |
[20] | A.M. Solodinin, E.B. Boyko, R.A. Andriyevskiy, Izv. Akad. Nauk SSSR, Met. 1, 198 (1978) in Russian; TR: Russ. Metall. 1, 178(1978) |
[21] | B. Siegel, G.G. Libowitz, Metal Hydrides, Chap. 12, 545(1968) |
[22] | S. Mishra, K.S. Sivaramakrihnan, M.K. Asundi, J. Nucl. Mater. 45 235 (1972) |
[23] | K.G. Barraclough, C.J. Beevers, J. Less Common Met. 5 177 (1974) |
[24] | R.W. Cahn, Adv. Mater. 3 628 (1991) |
[25] | F. Ducastelle, R. Caudron, P. Costa, J. Phys. 31, 57 (1970) |
[26] | M. Gupta, J.P. Burger, Phys. Rev. B 24 7099 (1981) |
[27] |
A.C. Switendick, J. Less Common Met. 101 191 (1984)
DOI URL |
[28] | D.A. Papaconstantopoulos, A.C. Switendick, J. Less Common Met. 103 317 (1984) |
[29] | G.J. Ackland, Phys. Rev. Lett. 80 2233 (1998) |
[30] |
M. Gupta, Phys. Rev. Lett. 81 3300 (1998)
URL PMID |
[31] | M. Gupta, Phys. Rev. B 25 1027 (1982) |
[32] | R. Quijano, R. de Coss, D.J. Singh, Phys. Rev. B 80 184103 (2009) |
[33] | F. Wang, H.R. Gong, Int. J. Hydrog. Energy 37 9688 (2012) |
[34] | C. Domain, R. Besson, A. Legris, Acta Mater. 50 3513 (2002) |
[35] |
H.L. Yakel, Acta Crystall. 11 46 (1958)
DOI URL |
[36] | W. Wolf, P. Herzig, J. Phys.: Condens. Matter 12 4535 (2000) |
[37] | J. Furthmuller, J. Hafner, G. Kresse, Phys. Rev. B 50 15606 (1994) |
[38] | W. Dong, G. Kresse, J. Furthmuller, J. Hafner, Phys. Rev. B 54 2157 (1996) |
[39] | G. Kresse, D. Joubert, Phys. Rev. B 59 1758 (1999) |
[40] | J. Leese, A.E. Lord, J. Appl. Phys. 39 3986 (1968) |
[41] | R. Khodabakhsh, D.K. Ross, J. Phys. F: Met. Phys. 12 15 (1982) |
[42] | G.C. Weatherly, Acta Metall. 29 501 (1981) |
[43] | J.S. Cantrell, R.C.J. Bowman, D.B. Sullenger, Chem. Inform. 15 918 (1984) |
[44] | R. Quijano, R. Decoss, D.J. Singh, Phys. Rev. B 80 2665 (2009) |
[45] | P. Zhang, B.T. Wang, C.H. He, P. Zhang, Comput. Mater. Sci. 50 3297 (2011) |
[46] | J. F. Nye, Oxford University Press(1958) |
[47] | F. Mouhat, F.X. Coudert, Phys. Rev. B 90 224104 (2014) |
[48] | P.J. Dobson, Phys. Bull. 36 506 (1985) |
[49] |
Y. Jiang, J.B. Adams, M. van Schilfgaarde, J. Chem. Phys. 123 64701 (2005)
DOI URL PMID |
[50] | F.D. Rossini, JANAF thermochemical tables: Stull, D. R. and Prophet, M. U.S. Government Printing Office: Washington. Second edition, 1971. J. Chem. Thermodyn. 4, 509(1972) |
[1] | Hui Xiao, Yu Liu, Kai Wang, Zhipeng Wang, Te Hu, Touwen Fan, Li Ma, Pingying Tang. Effects of Mn Content on Mechanical Properties of FeCoCrNiMnx (0≤x≤0.3) High-Entropy Alloys: A First-Principles Study [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 455-464. |
[2] | Yongfei Juan, Jiao Zhang, Yongbing Dai, Qing Dong, Yanfeng Han. Designing Rules of Laser-Clad High-Entropy Alloy Coatings with Simple Solid Solution Phases [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1064-1076. |
[3] | Fushi Jiang, Chang Pang, Zhaoyang Zheng, Qing Wang, Jijun Zhao, Chuang Dong. First-Principles Calculations for Stable β-Ti-Mo Alloys Using Cluster-Plus-Glue-Atom Model [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 968-974. |
[4] | Chaomin Zhang, Yong Jiang, Xiuhua Guo, Kexing Song. Formation and Relative Stabilities of Core-Shelled L12-Phase Nano-structures in Dilute Al-Sc-Er Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(12): 1627-1634. |
[5] | Yong Zhang, Zi-Ran Liu, Ding-Wang Yuan, Qin Shao, Jiang-Hua Chen, Cui-Lan Wu, Zao-Li Zhang. Elastic Properties and Stacking Fault Energies of Borides, Carbides and Nitrides from First-Principles Calculations [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(9): 1099-1110. |
[6] | Jia-Long Tian, Wei Wang, M. Babar Shahzad, Wei Yan, Yi-Yin Shan, Zhou-Hua Jian, Ke Yang. Corrosion Resistance of Co-containing Maraging Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(8): 785-797. |
[7] | Yi-Xue Wang, Mu-Fu Yan, Zhao-Bo Chen, Cheng-Song Zhang, Yuan You. Crystallographic Texture Evolution of γ′-Fe4N and Its Influences on Tribological Property of Nitrided Steel [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(4): 371-379. |
[8] | Jing-Li Li, Na Zhang, Xiao-Xuan Wang, Di Wu, Rong-Shi Chen. Effect of Solution Treatment on the Microstructure and Mechanical Properties of Sand-Cast Mg-9Gd-4Y-0.5Zr Alloy [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(2): 189-198. |
[9] | Tuo Cai, Zhen-Jun Zhang, Jin-Bo Yang, Zhe-Feng Zhang. Exploring the Possibility of Deformation Twinning in Pure Aluminum [J]. Acta Metallurgica Sinica (English Letters), 2016, 29(7): 647-651. |
[10] | Zhi-Xin Xia, Chuan-Yang Wang, Yan-Fen Zhao, Guo-Dong Zhang, Lu Zhang, Xin-Ming Meng. Laves Phase Formation and Its Effect on Mechanical Properties in P91 Steel [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(10): 1238-1246. |
[11] | Xiancong HE, Jinhong PI, Yuming DAI, Xiaoquan LI. Elastic and Thermo-physical Properties of Stannite-type Cu2ZnSnS4 and Cu2ZnSnSe4 from First-principles Calculations [J]. Acta Metallurgica Sinica (English Letters), 2013, 26(3): 285-292. |
[12] | Benhai YU,Dong CHEN. Phase Transition Characters and Thermodynamics Modeling of the Newly-Discovered wII-and Post-Spinel Si3N4 Polymorphs: A First-Principles Investigation [J]. Acta Metallurgica Sinica (English Letters), 2013, 26(2): 131-136. |
[13] | Zhonggang SUN, Guoqing CHEN, Xuesong FU, Yaoqi WANG, Hongliang HOU,Wenlong ZHOU. TEM investigations on hydrogen induced phasetransformation in Ti-6Al-4V alloys [J]. Acta Metallurgica Sinica (English Letters), 2010, 23(5): 357-362. |
[14] | X.Z.Sun. Degradation behaviors of new type TiV-based electrode alloys [J]. Acta Metallurgica Sinica (English Letters), 2006, 19(1): 68-74 . |
[15] | M.S.Zhao, Y.Z.Zeng. MICROSTRUCTURE AND ELECTROCHEMICAL CHARACTERISTICS OF Zr0.9Ti0.01(Ni1.1.Mn0.7V0.2)x METAL HYDRIDE ELECTRODE [J]. Acta Metallurgica Sinica (English Letters), 2003, 16(3): 192-196 . |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||