Acta Metallurgica Sinica (English Letters) ›› 2022, Vol. 35 ›› Issue (12): 2057-2068.DOI: 10.1007/s40195-022-01423-5
Previous Articles Next Articles
Changzheng Li1, Yunchang Xin2(), Guangjie Huang1(
), Qing Liu2
Received:
2022-03-28
Revised:
2022-04-24
Accepted:
2022-04-27
Online:
2022-12-10
Published:
2022-06-15
Contact:
Yunchang Xin,Guangjie Huang
About author:
Guangjie Huang, gjhuang@cqu.edu.cnChangzheng Li, Yunchang Xin, Guangjie Huang, Qing Liu. A Quantitative Study on the Effect of Heat Treatment on the Microstructure and Orientation of Titanium Hydride in Electrochemically Hydrogenated Pure Titanium[J]. Acta Metallurgica Sinica (English Letters), 2022, 35(12): 2057-2068.
Add to citation manager EndNote|Ris|BibTeX
Orientation relationship | Interface plane | |
---|---|---|
OR1 | {0001}//{001}, 〈1 | {10 |
OR2 | {0001}//{1 | {10 |
OR3 | {10 | {0001}//{1 |
OR4 | { | {10 |
Table 1 Four orientation relationships of hydride transition
Orientation relationship | Interface plane | |
---|---|---|
OR1 | {0001}//{001}, 〈1 | {10 |
OR2 | {0001}//{1 | {10 |
OR3 | {10 | {0001}//{1 |
OR4 | { | {10 |
Sample | Area fraction of δ-hydride |
---|---|
HT-12 h | 12% ± 0.5% |
HT-96 h | 5% ± 0.5% |
Table 2 Area fraction of δ-hydride in sample HT-12 h and sample HT-96 h
Sample | Area fraction of δ-hydride |
---|---|
HT-12 h | 12% ± 0.5% |
HT-96 h | 5% ± 0.5% |
Fig. 6 EBSD images of samples HT-12 h and HT-96 h: a phase map of HT-12 h; b Euler angles map of α-matrix in HT-12 h; c Euler angles map of FCC δ-hydride in HT-12 h; d phase map of HT-96 h; e Euler angles map of α-matrix in HT-96 h; f Euler angles map of FCC δ-hydride in HT-96 h
Fig. 9 Orientation relationships between matrix and δ-hydrides in grains A-D in Fig. 3a. orientations: Grain A (178.5°, 33.3°, 12.1°), Grain B (158.6°, 31.8°, 10.7°), Grain C (137.8°, 50.0°, 10.4°), Grain D (175.0°, 49.2°, 11.3°), Hydride 1 (74.3°, 34.8°, 3.4°), Hydride 2 (292.9°, 26.5°, 75.8°), Hydride 3 (49.1°, 36.1°, 69.3°) and Hydride 4 (96.3°, 36.6°, 60.3°)
Variant | Variant1 | Variant 2 | Variant 3 | Variant 4 | Variant 5 | Variant 6 |
---|---|---|---|---|---|---|
Interface | {10 | {01 | { | { | {0 | {1 |
Table 3 Interface planes of δ-hydride variants
Variant | Variant1 | Variant 2 | Variant 3 | Variant 4 | Variant 5 | Variant 6 |
---|---|---|---|---|---|---|
Interface | {10 | {01 | { | { | {0 | {1 |
Fig. 10 Stereographic projections of the orientation relationship planes, orientation relationship directions and interface planes of the α-Ti (HCP) and the δ-hydride in grains A, B, E, G and H in Fig. 6d. The coincidence of projections of the α-Ti and δ-hydride are indicated by black dashed frames, the black dotted lines outline the surface plane traces of the δ-hydrides and the solid lines connect the center of the pole figures with the poles corresponding to the surface planes and perpendicular to the surface plane traces
Fig. 11 a Euler map of δ-hydride across a grain boundary (Grain C and Grain D in Fig. 6d); b stereographic projections of the orientation relationship planes, orientation relationship directions and interface planes of δ-hydride and the two grains; c Euler map of two adjacent δ-hydrides with different orientations in Grain F; d orientation relationship plane, orientation relationship direction and interface plane of two orientation relationships between the two δ-hydrides and their matrix
Sample | Orientation relationship (OR) | Interface plane | Fraction of grains (%) |
---|---|---|---|
HT-12 h | OR1{0001}α//{001}δ 〈11 | {10 | 91 |
OR2 {0001}α//{1 〈11 | {10 | 89 | |
HT-96 h | OR1{0001}α//{001}δ 〈11 | {10 | 84 |
OR2 {0001}α//{1 〈11 | {10 | 3 |
Table 4 Fractions of grains containing δ-hydride with OR1and OR2 in samples HT-12 h and HT-96 h
Sample | Orientation relationship (OR) | Interface plane | Fraction of grains (%) |
---|---|---|---|
HT-12 h | OR1{0001}α//{001}δ 〈11 | {10 | 91 |
OR2 {0001}α//{1 〈11 | {10 | 89 | |
HT-96 h | OR1{0001}α//{001}δ 〈11 | {10 | 84 |
OR2 {0001}α//{1 〈11 | {10 | 3 |
[1] |
D. Banerjee, J.C. Williams, Acta Mater. 61, 844 (2013)
DOI URL |
[2] |
B. Guan, Y. Xin, X. Huang, C. Liu, P. Wu, Q. Liu, Int. J. Plast. 153, 103276 (2022)
DOI URL |
[3] | A.A. Illin, B.A. Kolachev, V.K. Nosov, A.M. Mamonov, Hydrogen Technology of Titanium Alloys (MISIS, Moscow, 2002), p. 392 |
[4] | S.V. Skvortsova, P.V. Panin, N.A. Nochovnaya, I.A. Grushin, N.G. Mitropol’skaya, Tekhnol. Legk. Splavov. 4, 35 (2011) |
[5] |
Y. Chang, A.J. Breen, Z. Tarzimoghadam, P. Kürnsteiner, H. Gardner, A. Ackerman, A. Radecka, P.A.J. Bagot, W. Lu, T. Li, E.A. J.gle, M. Herbig, L.T. Stephenson, M.P. Moody, D. Rugg, D. Dye, D. Ponge, D. Raabe, B. Gault, Acta Mater. 150, 273 (2018)
DOI URL |
[6] | H. Numakura, M. Koiwa, Perspectives in Hydrogen in Metals (Elsevier, Tokyo, 1986), pp. 501-509 |
[7] |
C.Q. Chen, S.X. Li, H. Zheng, L.B. Wang, K. Lu, Acta Mater. 52, 3697 (2004)
DOI URL |
[8] |
S. Chen, M. Zhao, L. Rong, Mater. Sci. Eng. A 561, 7 (2013)
DOI URL |
[9] |
J.J. Xu, H.Y. Cheung, S.Q. Shi, J. Alloys Compd. 436, 82 (2007)
DOI URL |
[10] |
N. Moody, M. Baskes, S. Robinson, M. Perra, Eng. Fract. Mech. 68, 731 (2001)
DOI URL |
[11] |
H. Birnbaum, MRS Bull. 28, 479 (2003)
DOI URL |
[12] | B. Sun, D. Wang, X. Lu, D. Wan, D. Ponge, X. Zhang, Acta Metall. Sin-Engl. Lett. 34, 741 (2021) |
[13] | X. Li, X. Ma, J. Zhang, E. Akiyama, Y. Wang, X. Song, Acta Metall. Sin-Engl. Lett. 33, 759 (2020) |
[14] |
E. Conforto, D. Caillard, Acta Mater. 55, 785 (2007)
DOI URL |
[15] |
E. Conforto, D. Caillard, Solid State Phenom. 172-174, 242 (2011)
DOI URL |
[16] |
A. Bourret, A. Lasalmonie, S. Naka, Scr. Metall. 20, 861 (1986)
DOI URL |
[17] |
O. Woo, G. Weatherly, C. Coleman, R. Gilbert, Acta Metall. 33, 1897 (1985)
DOI URL |
[18] |
J. Li, X. Li, M. Sui, J. Mater. Sci. Technol. 81, 108 (2021)
DOI URL |
[19] |
Q. Wang, S. Xu, J.S. Lecomte, C. Schuman, L. Peltier, X. Shen, W. Song, Acta Mater. 183, 329 (2020)
DOI URL |
[20] |
Q. Wang, J.S. Lecomte, C. Schuman, L. Peltier, Mater. Sci. Eng. A 832, 142428 (2022)
DOI URL |
[21] |
J. Kim, E. Plancher, C.C. Tasan, Acta Mater. 188, 686 (2020)
DOI URL |
[22] |
Y. Qiao, D. Xu, S. Wang, Y. Ma, J. Chen, Y. Wang, H. Zhou, J. Mater. Sci. Technol. 60, 168 (2021)
DOI URL |
[23] |
W. Wu, J. Liu, Z. Liu, L. Cui, C. Du, X. Li, J. Electroanal. Chem. 822, 23 (2018)
DOI URL |
[24] |
Q. Wang, S. Xu, Y. Zhao, J.S. Lecomte, C. Schuman, J. Mater. Sci. Technol. 103, 105 (2022)
DOI URL |
[25] | E. Conforto, I. Guillot, X. Feaugas, Philos. Trans. A Math. Phys. Eng. Sci. 375, 1417 (2017) |
[26] |
M.I. Luppo, A. Politi, G. Vigna, Acta Mater. 53, 4987 (2005)
DOI URL |
[27] |
J. Wen, N. Allain, E. Fleury, J. Alloys Compd. 817, 153297 (2020)
DOI URL |
[28] |
J.F. Nie, Acta Mater. 52, 795 (2004)
DOI URL |
[29] |
R. Khoda-Bakhsh, D. Ross, J. Phys. F Met. Phys. 12, 15 (1982)
DOI URL |
[30] |
M. Zhang, P. Kelly, M. Easton, J. Taylor, Acta Mater. 53, 1427 (2005)
DOI URL |
[1] | Junwei Sha, Meixian Li, Lizhuang Yang, Xudong Rong, Bowen Pu, Dongdong Zhao, Simi Sui, Xiang Zhang, Chunnian He, Jianglin Lan, Naiqin Zhao. Si-Assisted Solidification Path and Microstructure Control of 7075 Aluminum Alloy with Improved Mechanical Properties by Selective Laser Melting [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(9): 1424-1438. |
[2] | Mohammad Hossein Mosallanejad, Saber Sanaei, Masoud Atapour, Behzad Niroumand, Luca Iuliano, Abdollah Saboori. Microstructure and Corrosion Properties of CP-Ti Processed by Laser Powder Bed Fusion under Similar Energy Densities [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(9): 1453-1464. |
[3] | Jian-Yu Li, Shi-Ning Kong, Chi-Kun Liu, Bin-Bin Wang, Zhao Zhang. Chemical Composition Effect on Microstructures and Mechanical Properties in Friction Stir Additive Manufacturing [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(9): 1494-1508. |
[4] | Yinuo Guo, Haijun Su, Peixin Yang, Yong Zhao, Zhonglin Shen, Yuan Liu, Di Zhao, Hao Jiang, Jun Zhang, Lin Liu, Hengzhi Fu. A Review of Emerging Metallic System for High-Energy Beam Additive Manufacturing: Al-Co-Cr-Fe-Ni High Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(9): 1407-1423. |
[5] | Xing-Jiang Hua, Ping Hu, Hai-Rui Xing, Jia-Yu Han, Song-Wei Ge, Shi-Lei Li, Chao-Jun He, Kuai-She Wang, Chun-Juan Cui. Development and Property Tuning of Refractory High-Entropy Alloys: A Review [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1231-1265. |
[6] | Peng Peng, Shengyuan Li, Weiqi Chen, Yuanli Xu, Xudong Zhang, Zhikun Ma, Jiatai Wang. Phase Selection and Microhardness of Directionally Solidified AlCoCrFeNi2.1 Eutectic High-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1281-1290. |
[7] | Haoyang Yu, Wei Fang, Jinfei Zhang, Jiaxin Huang, Jiaohui Yan, Xin Zhang, Juan Wang, Jianhang Feng, Fuxing Yin. Microstructural Evolution of Co35Cr25Fe30Ni10 TRIP Complex Concentrated Alloy with the Addition of Minor Cu and Its Effect on Mechanical Properties [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1291-1300. |
[8] | Bao-Jia Hu, Qin-Yuan Zheng, Chun-Ni Jia, Peng Liu, Yi-Kun Luan, Cheng-Wu Zheng, Dian-Zhong Li. Improvement of Mechanical Properties of a Medium-Mn TRIP Steel by Precursor Microstructure Control [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1068-1078. |
[9] | Pengcheng Zhu, Lin Zhang, Zhaochang Li, K. H. Lo, Jianfeng Wang, Yufeng Sun, Shaokang Guan. Microstructure and Mechanical Properties of Friction Stir Welded 1.5 GPa Martensitic High-Strength Steel Plates [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1079-1089. |
[10] | Yong Zhao, Haijun Su, Guangrao Fan, Chenglin Liu, Taiwen Huang, Wenchao Yang, Jun Zhang, Lin Liu, Hengzhi Fu. Tailoring Microstructure and Microsegregation in a Directionally Solidified Ni-Based SX Superalloy by a Weak Transverse Static Magnetic Field [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1164-1174. |
[11] | Yu Chen, Jian-chao Pang, Shou-xin Li, Zhe-feng Zhang. High-Temperature Oxidation Behavior and Related Mechanism of RuT400 Vermicular Graphite Iron [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1117-1130. |
[12] | Zhenye Chen, Zhangguo Lin, Jianjun Qi, Yang Feng, Liqing Chen, Guodong Wang. Microstructures and Mechanical Properties of a New Multi-functional 460 MPa Grade Construction Structural Steel [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1131-1142. |
[13] | Chao Liu, Yilun Li, Xuequn Cheng, Xiaogang Li. Recent Advances on the Corrosion Resistance of Low-Density Steel: A Review [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1055-1067. |
[14] | Ke Zhao, Zhongying Duan, Jinling Liu, Guozheng Kang, Linan An. Strengthening Mechanisms of 15 vol.% Al2O3 Nanoparticles Reinforced Aluminum Matrix Nanocomposite Fabricated by High Energy Ball Milling and Vacuum Hot Pressing [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(6): 915-921. |
[15] | Junlei Zhang, Han Liu, Xiang Chen, Qin Zou, Guangsheng Huang, Bin Jiang, Aitao Tang, Fusheng Pan. Deformation Characterization, Twinning Behavior and Mechanical Properties of Dissimilar Friction-Stir-Welded AM60/AZ31 Alloys Joint During the Three-Point Bending [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 727-744. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||