Acta Metallurgica Sinica (English Letters) ›› 2022, Vol. 35 ›› Issue (7): 1131-1142.DOI: 10.1007/s40195-021-01359-2
Previous Articles Next Articles
Zhenye Chen1,2(), Zhangguo Lin2, Jianjun Qi2, Yang Feng1, Liqing Chen1(
), Guodong Wang1
Received:
2021-07-30
Revised:
2021-09-09
Accepted:
2021-09-27
Online:
2022-07-10
Published:
2022-01-06
Contact:
Zhenye Chen,Liqing Chen
About author:
Liqing Chen, lqchen@mail.neu.edu.cnZhenye Chen, Zhangguo Lin, Jianjun Qi, Yang Feng, Liqing Chen, Guodong Wang. Microstructures and Mechanical Properties of a New Multi-functional 460 MPa Grade Construction Structural Steel[J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1131-1142.
Add to citation manager EndNote|Ris|BibTeX
Steels | C | Mn | Si | Cr + Mo | Ni + Cu | Nb + B | Fe |
---|---|---|---|---|---|---|---|
New Q460 | ≤ 0.07 | ≤ 1.10 | ≤ 0.15 | ≤ 0.55 | ≤ 0.75 | ≤ 0.03 | Bal. |
Conventional Q460 | 0.174 | 1.534 | 0.277 | - | - | ≤ 0.03 | Bal. |
Table 1 Chemical composition of the experimental steel (wt%)
Steels | C | Mn | Si | Cr + Mo | Ni + Cu | Nb + B | Fe |
---|---|---|---|---|---|---|---|
New Q460 | ≤ 0.07 | ≤ 1.10 | ≤ 0.15 | ≤ 0.55 | ≤ 0.75 | ≤ 0.03 | Bal. |
Conventional Q460 | 0.174 | 1.534 | 0.277 | - | - | ≤ 0.03 | Bal. |
Fig. 2 Typical micrographs of different specimens: a-c OM images, d-f SEM images, g-i BC maps of the specimens with FCTs of 580 °C a, d, g, 480 °C b, e, h. 380 °C c, f, i. The red area in BC maps represents RA
Specimens | YS (MPa) | TS (MPa) | TE (%) | YR | TS·TE (GPa⋅%) |
---|---|---|---|---|---|
FCT-580 | 456 ± 7 | 623 ± 10 | 18.9 ± 0.8 | 0.730 ± 0.005 | 11.8 ± 0.7 |
FCT-480 | 515 ± 7 | 645 ± 5 | 21.1 ± 0.8 | 0.798 ± 0.009 | 13.6 ± 0.6 |
FCT-380 | 521 ± 24 | 654 ± 19 | 20.1 ± 1.4 | 0.797 ± 0.036 | 13.1 ± 1.2 |
Conventional Q460 | 512 ± 9 | 618 ± 11 | 20.0 ± 0.9 | 0.828 ± 0.029 | 12.4 ± 0.7 |
Performance Standards | ≥ 460 | 570-720 | ≥ 18% | ≤ 0.83 | - |
Table 2 Room temperature tensile properties of the experimental steels
Specimens | YS (MPa) | TS (MPa) | TE (%) | YR | TS·TE (GPa⋅%) |
---|---|---|---|---|---|
FCT-580 | 456 ± 7 | 623 ± 10 | 18.9 ± 0.8 | 0.730 ± 0.005 | 11.8 ± 0.7 |
FCT-480 | 515 ± 7 | 645 ± 5 | 21.1 ± 0.8 | 0.798 ± 0.009 | 13.6 ± 0.6 |
FCT-380 | 521 ± 24 | 654 ± 19 | 20.1 ± 1.4 | 0.797 ± 0.036 | 13.1 ± 1.2 |
Conventional Q460 | 512 ± 9 | 618 ± 11 | 20.0 ± 0.9 | 0.828 ± 0.029 | 12.4 ± 0.7 |
Performance Standards | ≥ 460 | 570-720 | ≥ 18% | ≤ 0.83 | - |
Temperature (°C) | FCT-580 | FCT-480 | FCT-380 |
---|---|---|---|
0 | 118 ± 19 | 171 ± 7 | 127 ± 2 |
- 20 | 61 ± 16 | 170 ± 5 | 116 ± 8 |
- 40 | 33 ± 1 | 149 ± 1 | 107 ± 3 |
- 60 | 22 ± 1 | 114 ± 14 | 111 ± 10 |
Table 3 Impact toughness (J/cm2) of the experimental steels with different FCTs
Temperature (°C) | FCT-580 | FCT-480 | FCT-380 |
---|---|---|---|
0 | 118 ± 19 | 171 ± 7 | 127 ± 2 |
- 20 | 61 ± 16 | 170 ± 5 | 116 ± 8 |
- 40 | 33 ± 1 | 149 ± 1 | 107 ± 3 |
- 60 | 22 ± 1 | 114 ± 14 | 111 ± 10 |
Specimens | YS (MPa) | TS (MPa) | TE (%) | YS (600 °C)/YS(RT) | TS (600 °C)/TS(RT) |
---|---|---|---|---|---|
FCT-580 | 312 ± 5 | 366 ± 7 | 20.4 ± 1.1 | 0.684 | 0.587 |
FCT-480 | 359 ± 11 | 441 ± 13 | 20.0 ± 1.3 | 0.704 | 0.684 |
FCT-380 | 366 ± 6 | 436 ± 11 | 15.2 ± 0.8 | 0.702 | 0.667 |
Conventional Q460 | 212 ± 2 | 256 ± 5 | 42.6 ± 2.1 | 0.414 | 0.414 |
Table 4 Tensile properties of the experimental steels at 600 °C
Specimens | YS (MPa) | TS (MPa) | TE (%) | YS (600 °C)/YS(RT) | TS (600 °C)/TS(RT) |
---|---|---|---|---|---|
FCT-580 | 312 ± 5 | 366 ± 7 | 20.4 ± 1.1 | 0.684 | 0.587 |
FCT-480 | 359 ± 11 | 441 ± 13 | 20.0 ± 1.3 | 0.704 | 0.684 |
FCT-380 | 366 ± 6 | 436 ± 11 | 15.2 ± 0.8 | 0.702 | 0.667 |
Conventional Q460 | 212 ± 2 | 256 ± 5 | 42.6 ± 2.1 | 0.414 | 0.414 |
Fig. 8 SEM morphologies of the specimens held at 600 °C for 2 h followed by quenching to the room temperature: a FCT-580; b FCT-480; c FCT-380; d conventional Q460
Fig. 9 TEM morphologies of the specimens held at 600 °C for 2 h followed by quenching to the room temperature: a, d FCT-480; b, e FCT-380; c, f conventional Q460 steel
Fig. 10 Thermodynamic calculations using JMatPro: a phase constitutions; b enlarged graph of the square area a; c distribution of Mo in different phases
Specimens | Corrosion current density (μA/cm2) | Corrosion potential (V) |
---|---|---|
FCT-580 | 6.880 | - 0.3899 |
FCT-480 | 7.814 | - 0.4034 |
FCT-380 | 2.229 | - 0.3837 |
Conventional Q460 | 11.468 | - 0.4521 |
Table 5 Corrosion current density and potential for the experimental steels
Specimens | Corrosion current density (μA/cm2) | Corrosion potential (V) |
---|---|---|
FCT-580 | 6.880 | - 0.3899 |
FCT-480 | 7.814 | - 0.4034 |
FCT-380 | 2.229 | - 0.3837 |
Conventional Q460 | 11.468 | - 0.4521 |
[1] |
R. Bjorhovde, Adv. Struct. Eng. 13, 403 (2010)
DOI URL |
[2] | G.Q. Li, Y.B. Wang, S.W. Chen, F.F. Sun, J. Build. Struct. 34, 1 (2013) |
[3] |
C. Ouchi, ISIJ Int. 41, 542 (2001)
DOI URL |
[4] | H. Hatano, Y. Okazaki, T. Takagi, H. Takeda, S. Okano, Res. Dev. Kobe Steel Eng. Rep. 53, 49 (2002) |
[5] | Y. Kobayashi, T. Shiwaku, M. Shibata, Res. Dev. Kobe Steel Eng. Rep. 58, 52 (2008) |
[6] | F.S. Kelly, W. Sha, J. Constr. Steel Res. 50, 233 (1999) |
[7] |
M. Kaori, S. Yoshiatsu, ISIJ Int. 41, 281 (2001)
DOI URL |
[8] | M.W. Tong, Z.X. Yuan, K.G. Zhang, X.L. Rui, J. Iron Steel Res. Int. 18, 903 (2011) |
[9] |
Y. Funakawa, T. Shiozaki, K. Tomita, T. Yamamoto, E. Maeda, ISIJ Int. 44, 1945 (2004)
DOI URL |
[10] |
J. Cao, Q. Yong, Q. Liu, X. Sun, J. Mater. Sci. 42, 10080 (2007)
DOI URL |
[11] |
R. Wan, S. Feng, L. Zhang, A. Shan, Mater. Des. 36, 227 (2012)
DOI URL |
[12] |
M. Assefpour-Dezfuly, B.A. Hugass, A. Brownrigg, Mater. Sci. Technol. 6, 1210 (1990)
DOI URL |
[13] |
W.B. Lee, S.G. Hong, C.G. Park, S.H. Park, Metall. Mater. Trans. A 33, 1689 (2002)
DOI URL |
[14] | H.R. Copson, Proc. ASTM 45,554 (1945) |
[15] |
T. Misawa, T. Kyuno, W. Suëtaka, S. Shimodaira, Corros. Sci. 11, 35 (1971)
DOI URL |
[16] |
T. Misawa, K. Asami, K. Hashimoto, S. Shimodaira, Corros. Sci. 14, 279 (1974)
DOI URL |
[17] |
M. Kimura, H. Kihira, N. Ohta, M. Hashimoto, T. Senuma, Corros. Sci. 47, 2499 (2005)
DOI URL |
[18] |
M.A.M. Ibrahim, S.S. Abd El Rehim, M.M. Hamza, Mater. Chem. Phys. 115, 80 (2009)
DOI URL |
[19] |
Y. Qian, C. Ma, D. Niu, J. Xu, M. Li, Corros. Sci. 74, 424 (2013)
DOI URL |
[20] |
T.Y. Zhang, X.X. Xu, Y. Li, X.W. Lv, Constr Build. Mater. 277, 122298 (2021)
DOI URL |
[21] | J. Kang, Z.D. Wang, G.D. Wang, Adv. Mater. Res. 194-196, 292 (2011) |
[22] |
H.L. Yi, Y. Xu, M.X. Sun, Z.Y. Liu, G.D Wang, J. Iron Steel Res. 21, 433 (2014)
DOI URL |
[23] | K. Zhang, Z.D. Li, X.J. Sun, Q.L. Yong, J.W. Yang, Y.M. Li, P.L. Zhao, Acta Metall. Sin.-Engl. Lett. 25, 641 (2015) |
[24] | K. Zhang, H. Wang, X.J. Sun, F.L. Sui, Z.D. Li, E.X. Pu, Z.H. Zhu, Z.Y. Huang, H.B. Pan, Q.L. Yong, Acta Metall. Sin. -Engl. Lett. 31, 997 (2018) |
[25] |
J. Chen, M.Y. Lv, S. Tang, Z.Y. Liu, G.D. Wang, Mater. Sci. Eng. A 594,389 (2014)
DOI URL |
[26] |
F.Z. Bu, X.M. Wang, L. Chen, S.W. Yang, C.J. Shang, R.D.K. Misra, Mater. Charact. 102, 146 (2015)
DOI URL |
[27] |
C. Garcia-Mateo, F.G. Caballero, H.K.D.H. Bhadeshia, ISIJ Int. 43, 1821 (2003)
DOI URL |
[28] |
S.B. Singh, H.K.D.H. Bhadeshia, Mater. Sci. Eng. A 245,72 (1998)
DOI URL |
[29] | H.K.D.H. Bhadeshia, Bainite in steels, 3nd edn. (Institute of Materials, Minerals & Mining, London, 2015), pp. 22 |
[30] | W.T. Zhu, J.J. Cui, Z.Y. Chen, Y. Feng, Y. Zhao, L.Q. Chen, Acta Metall. Sin. 57, 340 (2021) |
[31] |
B. C.D. Cooman, Curr. Opin. Solid. St. M. 8, 285 (2004)
DOI URL |
[32] | C. García-Mateo, F.G. Caballero, Mater. Trans. 46, 1839 (2005) |
[33] |
W.Y. Wang, Y.H. Zhang, L. Xu, X. Li, Fire Safety J. 114, 103010 (2020)
DOI URL |
[34] |
G.Q. Li, L.X. Song, Fire Safety J. 116, 103190 (2020)
DOI URL |
[35] |
X. Yan, Y. Xia, H.B. Blum, T. Gernay, J. Constr. Steel Res. 174, 106299 (2020)
DOI URL |
[1] | Fei Qiang, Wen Wang, Ke Qiao, Pai Peng, Ting Zhang, Xiao-Hu Guan, Jun Cai, Qiang Meng, Hua-Xia Zhao, Kuai-She Wang. Microstructure and Mechanical Properties in Friction Stir Welded Thick Al-Zn-Mg-Cu Alloy Plate [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1329-1342. |
[2] | Xing-Jiang Hua, Ping Hu, Hai-Rui Xing, Jia-Yu Han, Song-Wei Ge, Shi-Lei Li, Chao-Jun He, Kuai-She Wang, Chun-Juan Cui. Development and Property Tuning of Refractory High-Entropy Alloys: A Review [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1231-1265. |
[3] | Peng Peng, Shengyuan Li, Weiqi Chen, Yuanli Xu, Xudong Zhang, Zhikun Ma, Jiatai Wang. Phase Selection and Microhardness of Directionally Solidified AlCoCrFeNi2.1 Eutectic High-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1281-1290. |
[4] | Haoyang Yu, Wei Fang, Jinfei Zhang, Jiaxin Huang, Jiaohui Yan, Xin Zhang, Juan Wang, Jianhang Feng, Fuxing Yin. Microstructural Evolution of Co35Cr25Fe30Ni10 TRIP Complex Concentrated Alloy with the Addition of Minor Cu and Its Effect on Mechanical Properties [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1291-1300. |
[5] | Xiong Zhou, Qichi Le, Chenglu Hu, Ruizhen Guo, Tong Wang, Chunming Liu, Dandan Li, Xiaoqiang Li. Mechanical Properties and Corrosion Behavior of Multi-Microalloying Mg Alloys Prepared by Adding AlCoCrFeNi Alloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1301-1316. |
[6] | Bao-Jia Hu, Qin-Yuan Zheng, Chun-Ni Jia, Peng Liu, Yi-Kun Luan, Cheng-Wu Zheng, Dian-Zhong Li. Improvement of Mechanical Properties of a Medium-Mn TRIP Steel by Precursor Microstructure Control [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1068-1078. |
[7] | Pengcheng Zhu, Lin Zhang, Zhaochang Li, K. H. Lo, Jianfeng Wang, Yufeng Sun, Shaokang Guan. Microstructure and Mechanical Properties of Friction Stir Welded 1.5 GPa Martensitic High-Strength Steel Plates [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1079-1089. |
[8] | Yong Zhao, Haijun Su, Guangrao Fan, Chenglin Liu, Taiwen Huang, Wenchao Yang, Jun Zhang, Lin Liu, Hengzhi Fu. Tailoring Microstructure and Microsegregation in a Directionally Solidified Ni-Based SX Superalloy by a Weak Transverse Static Magnetic Field [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1164-1174. |
[9] | Chao Liu, Yilun Li, Xuequn Cheng, Xiaogang Li. Recent Advances on the Corrosion Resistance of Low-Density Steel: A Review [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1055-1067. |
[10] | Yu Chen, Jian-chao Pang, Shou-xin Li, Zhe-feng Zhang. High-Temperature Oxidation Behavior and Related Mechanism of RuT400 Vermicular Graphite Iron [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1117-1130. |
[11] | Ke Zhao, Zhongying Duan, Jinling Liu, Guozheng Kang, Linan An. Strengthening Mechanisms of 15 vol.% Al2O3 Nanoparticles Reinforced Aluminum Matrix Nanocomposite Fabricated by High Energy Ball Milling and Vacuum Hot Pressing [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(6): 915-921. |
[12] | Hao Gu, Zhide Li, Kaiguang Luo, Laxman Bhatta, Hanqing Xiong, Yun Zhang, Charlie Kong, Hailiang Yu. Enhanced Mechanical Properties of AA5083 Matrix Composite via Introducing Al0.5CoCrFeNi Particles and Cryorolling [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(6): 879-889. |
[13] | Wen Wang, Shan-Yong Chen, Ke Qiao, Pai Peng, Peng Han, Bing Wu, Chen-Xi Wang, Jia Wang, Yu-Hao Wang, Kuai-She Wang. Microstructure, Mechanical Properties, and Corrosion Behavior of Mg-Al-Ca Alloy Prepared by Friction Stir Processing [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 703-713. |
[14] | Junlei Zhang, Han Liu, Xiang Chen, Qin Zou, Guangsheng Huang, Bin Jiang, Aitao Tang, Fusheng Pan. Deformation Characterization, Twinning Behavior and Mechanical Properties of Dissimilar Friction-Stir-Welded AM60/AZ31 Alloys Joint During the Three-Point Bending [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 727-744. |
[15] | Xicai Luo, Haolin Liu, Limei Kang, Jielin Lin, Datong Zhang, Dongyang Li, Daolun Chen. Achieving Superior Superplasticity in a Mg-6Al-Zn Plate via Multi-pass Submerged Friction Stir Processing [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 757-762. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||