Acta Metallurgica Sinica (English Letters) ›› 2025, Vol. 38 ›› Issue (6): 904-924.DOI: 10.1007/s40195-025-01841-1
Previous Articles Next Articles
Yang Zhao1,2, Bo He1,2, Jinliang Yang1,2, Yongxiang Liu1,2, Tao Zhang1,2, Fuhui Wang1,2
Received:
2024-09-03
Revised:
2024-12-07
Accepted:
2024-12-24
Online:
2025-06-10
Published:
2025-03-28
Contact:
Tao Zhang, Yang Zhao, Bo He, Jinliang Yang, Yongxiang Liu, Tao Zhang, Fuhui Wang. Critical Role of Intermetallic Particles in the Corrosion of 6061 Aluminum Alloy and Anodized Aluminum Used in Semiconductor Processing Equipment[J]. Acta Metallurgica Sinica (English Letters), 2025, 38(6): 904-924.
Add to citation manager EndNote|Ris|BibTeX
Alloys | Mg | Si | Mn | Fe | Cu | Zn | Ti | Cr | Al |
---|---|---|---|---|---|---|---|---|---|
AA6061 | 1.060 | 0.634 | 0.128 | 0.443 | 0.257 | 0.065 | 0.025 | 0.306 | Bal. |
SW6061 | 0.895 | 0.532 | 0.037 | 0.262 | 0.211 | 0.006 | 0.032 | 0.128 | Bal. |
Table 1 Chemical composition of 6061 aluminum alloys (wt%)
Alloys | Mg | Si | Mn | Fe | Cu | Zn | Ti | Cr | Al |
---|---|---|---|---|---|---|---|---|---|
AA6061 | 1.060 | 0.634 | 0.128 | 0.443 | 0.257 | 0.065 | 0.025 | 0.306 | Bal. |
SW6061 | 0.895 | 0.532 | 0.037 | 0.262 | 0.211 | 0.006 | 0.032 | 0.128 | Bal. |
Experimental group | HCl (sccm) | Ar (sccm) | ArH2O (sccm) | T (°C) | P (Torr) | Time (h) |
---|---|---|---|---|---|---|
1 | 167 | - | 100 | 120 | 100 | 72 |
2 | 167 | 100 | - | 120 | 100 | 72 |
Table 2 Experimental conditions for gas corrosion
Experimental group | HCl (sccm) | Ar (sccm) | ArH2O (sccm) | T (°C) | P (Torr) | Time (h) |
---|---|---|---|---|---|---|
1 | 167 | - | 100 | 120 | 100 | 72 |
2 | 167 | 100 | - | 120 | 100 | 72 |
Fig. 3 TEM-BF and SAED image, STEM-HAADF image and EDS spectrum of Al-Fe-Si phase of a AA 6061, b SW6061 aluminum alloy, and the TEM-BF image and SAED image, STEM-HAADF image and EDS spectrum of Al-Mg-Si phase of c AA 6061 and d SW60616061 aluminum alloy
Fig. 4 Distributions of Al-Fe-Si and Al-Mg-Si on the surface of AA6061 and SW6061 aluminum alloys: a the distribution of size and cumulative probability, b the fraction of area, and c the density distribution
Fig. 5 a Potentiodynamic polarization curves of the AA6061 and SW6061 aluminum alloy in 0.1 mol/L HCl solution at 30 °C, and b the statistics of self-corrosion current and self-corrosion potential
Fig. 6 a Corrosion rates of the AA6061 and SW6061 aluminum alloy under 0.1 mol/L HCl in hydrochloric acid mist experiments at different temperatures (30, 60, 90 and 120 °C), and b activation energy of reaction
Fig. 8 Corrosion rates of AA6061 and SW6061aluminum alloys in the gas experiments at 120 °C and 100 Torr with a dry gas (HCl + Ar), and b wet gas (HCl + ArH2O)
Fig. 9 Morphologies of Al15(Fe,Mn)3Si2 in AA6061 and SW6061 aluminum alloys of before and after the dry gas (HCl + Ar) corrosion, and after removal of corrosion products
Fig. 10 Morphologies of Mg2Si in AA6061 and SW6061 aluminum alloys of before and after the dry gas (HCl + Ar) corrosion, and after removal of corrosion products
Fig. 11 Morphologies of Al15(Fe,Mn)3Si2 in AA6061 and SW6061 aluminum alloy of before and after the wet gas (HCl + ArH2O) corrosion, and after removal corrosion products
Fig. 12 Morphologies of Mg2Si in AA6061 and SW6061 aluminum alloys of before and after the wet gas (HCl + ArH2O) corrosion, and after removal of corrosion products
Points | O | Al | Si | Fe | Cl |
---|---|---|---|---|---|
1 | 52.34 | 45.45 | - | - | 2.21 |
2 | 50.50 | 22.98 | 19.15 | 3.25 | 4.12 |
3 | 28.47 | 43.28 | 12.32 | - | 15.93 |
Table 3 Elemental content of corrosion products for HAAF after gas corrosion (at.%)
Points | O | Al | Si | Fe | Cl |
---|---|---|---|---|---|
1 | 52.34 | 45.45 | - | - | 2.21 |
2 | 50.50 | 22.98 | 19.15 | 3.25 | 4.12 |
3 | 28.47 | 43.28 | 12.32 | - | 15.93 |
Fig. 16 a Potentiodynamic polarization curves of the HAFA of AA 6061 aluminum alloy with horizontal or vertical rolling in 0.1 M HCl solution at 30 °C, and b the statistics of self-corrosion current and self-corrosion potential
Fig. 20 Dry and wet gas (HCl + ArH2O) corrosion mechanism diagram of different processes of HAFA: a dry gas with vertical rolling and with b horizontal rolling, c wet gas with vertical rolling and with d horizontal rolling
[1] | G. Cunge, B. Pelissier, O. Joubert, R. Ramos, C. Maurice, Plasma Sour. Sci. Technol. 14, 599 (2005) |
[2] | N. Ito, T. Moriya, F. Uesugi, M. Matsumoto, S. Liu, Y. Kitayama, Jpn. J. Appl. Phys. 47, 3630 (2008) |
[3] | S.S. Lee, M.J. Kim, C.W. Chung, J.B. Song, S.G. Oh, J.T. Kim, N.K. Chung, J.Y. Yun, J. Korean Phys. Soc. 74, 1046 (2019) |
[4] | J.S. Shin, M. Kim, J.B. Song, N.G. Jeong, J.T. Kim, J.Y. Yun, Appl. Sci. Converg. Tec. 27, 9 (2018) |
[5] | J. Tanaka, K. Shiraishi, J. Surf. Sci. Nanotechnol. 11, 1 (2013) |
[6] | D.J. Economou, J. Phys. Phys. D Appl. Phys. 47, 303001 (2014) |
[7] | S.J. Ullal, A.R. Godfrey, E. Edelberg, L. Braly, V. Vahedi, E.S. Aydil, J. Vac. Sci. Technol. 20, 43 (2002) |
[8] | Y. Hamedani, P. Macha, T.J. Bunning, R.R. Naik, M.C. Vasudev, InTech eBooks 4, 243 (2016) |
[9] | R. Winter, D. Korzec, J. Engemann, Surf. Coat. Technol. 91, 101 (1997) |
[10] | M. Armacost, P.D. Hoh, R. Wise, W. Yan, J.J. Brown, J.H. Keller, G.A. Kaplita, S.D. Halle, K.P. Muller, M.D. Naeem, IBM J. Res. Dev. 43, 39 (1999) |
[11] |
M. Zhu, B.Z. Zhao, Y.F. Yuan, S.Y. Guo, J. Pan, J. Mater. Eng. Perform. 29, 4725 (2020)
DOI |
[12] | G.E.J. Poinern, N. Ali, D. Fawcett, Materials 4, 487 (2011) |
[13] | K. El-Menshawy, A.W.A. El-Sayed, M.E. El-Bedawy, H.A. Ahmed, S.M. El-Raghy, Corros. Sci. 54, 167 (2012) |
[14] | C. Hsu, K.A.Q. O’Reilly, B. Cantor, R. Hamerton, Mater. Sci. Eng. A Struct. 304, 119 (2001) |
[15] | M. Warmuzek, K. Rabczak, J. Sieniawski, J. Mater. Process. Technol. 162, 422 (2005) |
[16] | T. Gao, Y. Wu, C. Li, X. Liu, Mater. Lett. 110, 191 (2013) |
[17] | K. Buchanan, K. Colas, J. Ribis, A. Lopez, J. Garnier, Acta Mater. 132, 209 (2017) |
[18] | T. He, W. Shi, S. Xiang, C. Huang, R.G. Ballinger, Materials 14, 1821 (2021) |
[19] | C. Peng, G. Cao, T. Gu, C. Wang, Z. Wang, C. Sun, Corros. Sci. 210, 110840 (2023) |
[20] | A. Pardo, P. Casajús, M. Mohedano, A.E. Coy, F. Viejo, B. Torres, E. Matykina, Appl. Surf. Sci. 255, 6968 (2009) |
[21] | I.S. Molchan, T.V. Molchan, N.V. Gaponenko, P. Skeldon, G.E. Thompson, Electrochem. Commun. 12, 693 (2010) |
[22] | Y.S. Huang, T.S. Shih, J.H. Chou, Appl. Surf. Sci. 283, 249 (2013) |
[23] | N. Hu, X. Dong, X. He, J.F. Browning, D.W. Schaefer, Corros. Sci. 97, 17 (2015) |
[24] | Y. Ma, H. Wu, X. Zhou, K. Li, Y. Liao, Z. Liang, L. Liu, Corros. Sci. 158, 108110 (2019) |
[25] | H. Wu, Y. Ma, W. Huang, X. Zhou, K. Li, Y. Liao, Z. Wang, Z. Liang, L. Liu, J. Electrochem. Soc. 165, C573 (2018) |
[26] | M. Schneider, K. Kremmer, Mater. Corros. 70, 2041 (2019) |
[27] | P. Zhu, Y. Ma, K. Li, Z. Liang, B. Yang, W. Huang, Y. Liao, Surf. Coat. Technol. 394, 125852 (2020) |
[28] | J. Li, H. Wei, K. Zhao, M. Wang, D. Chen, M. Chen, Thin Solid Films 713, 138359 (2020) |
[29] | H. Jo, S. Lee, D. Kim, J. Lee, Materials 13, 4904 (2020) |
[30] | D. Wu, D. Zhang, Y. Ye, L. Ma, B. Minhas, B. Liu, H.A. Terryn, J.M.C. Mol, X. Li, Chem. Eng. J. 368, 138 (2019) |
[31] | Y. Yang, J. Cheng, S. Liu, H. Wang, P. Dong, Mater. Corros. 70, 120 (2019) |
[32] | D. Singh, V. Dhayal, D.C. Agarwal, Surf. Eng. Appl. Electrochem. 55, 436 (2019) |
[33] | P. Vengatesh, M.A. Kulandainathan, ACS Appl. Mater. 7, 1516 (2015) |
[34] | N. Bayat, T. Carlberg, M. Cieslar, J. Alloy. Compd. 725, 504 (2017) |
[35] | R.A. Kent, J. Am. Chem. Soc. 90, 5657 (2002) |
[36] | H. Li, P. Zhao, Z. Wang, Q. Mao, B. Fang, R. Song, Z. Zheng, Corros. Sci. 107, 113 (2016) |
[37] | J. Yang, F. Zhao, W. Huang, D. Zhu, K. Li, Mater. Chem. Phys. 315, 128863 (2024) |
[38] | A. Davoodi, J. Pan, C. Leygraf, S. Norgren, J. Electrochem. Soc. 155, C211 (2008) |
[39] | J.O. Park, C.H. Paik, Y.H. Huang, R.C. Alkire, J. Electrochem. Soc. 146, 517 (2019) |
[40] | M.H. Larsen, J.C. Walmsley, O. Lunder, R.H. Mathiesen, K. Nisancioglu, J. Electrochem. Soc. 155, C550 (2008) |
[41] | L. Fan, F. Wang, Z. Wang, X. Hao, N. Yang, D. Ran, Materials 16, 6027 (2023) |
[42] | R.I. Revilla, D. Verkens, T. Rubben, I. De Graeve,Materials 13, 4804 (2020) |
[43] | C. Berlanga-Labari, M.V. Biezma-Moraleda, P.J. Rivero,Metals 10, 1384 (2020) |
[44] | N.D. Loh, S. Sen, M. Bosman, S.F. Tan, J. Zhong, C.A. Nijhuis, P. Kral, P. Matsudaira, U. Mirsaidov, Nat. Chem. 9, 77 (2017) |
[45] | J.J. De Yoreo, P.U.P.A. Gilbert, N.A.J.M. Sommerdijk, R.L. Penn, S. Whitelam, D. Joester, H. Zhang, J.D. Rimer, A. Navrotsky, J.F. Banfield, A.F. Wallace, F.M. Michel, F.C. Meldrum, H. Coelfen, P.M. Dove, Science 349, aaa6760 (2015) |
[46] | Y. Zhu, S. Wang, Q. Yang, F. Zhou, J. Mater. Eng. Perform. 23, 3389 (2014) |
[47] | L. Zhu, M. Guo, G. Li, J. Zhang, J. Mater. Sci. Technol. 57, 14490 (2022) |
[48] | C.A. Ku, C.Y. Yu, C.W. Hung, C.K. Chung, Nanomaterials 13, 2853 (2023) |
[49] | A.M. Md Jani, D. Losic, N.H. Voelcker, Prog. Mater. Sci. 58, 636 (2013) |
[50] | T.P. Hoar, N.F. Mott, J. Phys. Chem. Solids 9, 97 (1959) |
[51] | W. Lee, S.J. Park, Chem. Rev. 114, 7487 (2014) |
[52] | T. Aerts, T. Dimogerontakis, I. De Graeve, J. Fransaer, H. Terryn, Surf. Coat. Technol. 201, 7310 (2007) |
[53] | M.A. Osipenko, D.S. Kharitonov, I.V. Makarova, V.I. Romanovsky, I.I. Kurilo, Prot. Met. Phys. Chem. 57, 550 (2021) |
[54] | Y. Ma, X. Zhou, G.E. Thompson, T. Hashimoto, P. Thomson, M. Fowles, Mater. Chem. Phys. 126, 46 (2011) |
[55] | K.F. Karhausen, A.L. Dons, T. Aukrust, Mater. Sci. Forum 217, 403 (1996) |
[56] | H. Zhu, T. Wei, M.J. Couper, A.K. Dahle, JOM 64, 337 (2012) |
[57] | H. Zhu, T. Wei, M.J. Couper, A.K. Dahle, JOM 65, 618 (2013) |
[58] | Y. Jin, M. Liu, C. Zhang, C. Leygraf, L. Wen, J. Pan, J. Electrochem. Soc. 164, C465 (2017) |
[59] | L. Mullert, J.R. Galvele, Corros. Sci. 17, 179 (1977) |
[60] | R. Buchheit, J. Electrochem. Soc. 142, 3994 (1995) |
[61] | N. Birbilis, R.G. Buchheit, J. Electrochem. Soc. 152, B140 (2005) |
[62] | A. Kosari, F. Tichelaar, P. Visser, H. Zandbergen, H. Terryn, J. Mol, Corros. Sci. 177, 108947 (2020) |
[63] | Y. Zhu, K. Sun, G. Frankel, rankel, J. Electrochem. Soc. 165, C807 (2018) |
[64] | A. Boag, A.E. Hughes, A.M. Glenn, T.H. Muster, D. McCulloch, Corros. Sci. 53, 17 (2011) |
[65] | K.A. Yasakau, M.L. Zheludkevich, S.V. Lamaka, M.G.S. Ferreira, Electrochim. Acta 52, 7651 (2007) |
[66] | A.E. Hughes, A. Boag, A.M. Glenn, D. McCulloch, T.H. Muster, C. Ryan, C. Luo, X. Zhou, G.E. Thompson, Corros. Sci. 53, 27 (2011) |
[67] | A.M. Glenn, T.H. Muster, C. Luo, X. Zhou, G.E. Thompson, A. Boag, A.E. Hughes, Corros. Sci. 53, 40 (2011) |
[1] | Yunhu Ding, Yingpeng Li, Hongfang Liu, Wenhao Wang, Yijun Wei, Haitao Duan, Wen Zhan. Corrosion Evolution Behavior of Ti/Zr/Oligomeric Epoxy Silane Composite Chemical Conversion Coatings on Multi-metals [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(6): 889-903. |
[2] | Chenzhi Xing, Ming-Hsien Lee, Gongwang Cao, Yuwei Liu, Quanzhong Guo, Zhenyao Wang, Chuan Wang. Discoloration Process of Minted Copper-Nickel Alloys in Chloride Ion-Containing Environments: Experimental and DFT Research [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(6): 925-945. |
[3] | Li Zhao, Tian-Yu Cui, Wei-Wei Chang, Hong-Chang Qian, Yun-Tian Lou, Jing-Zhi Yang, Da-Wei Zhang. Effect of Mineralization Induced by Shewanella algae on Passive Film of Stainless Steel via FIB-SEM/TEM and EELS [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(6): 877-888. |
[4] | Yang Feng, Shuai Wang, Yang Zhao, Li-Qing Chen. Achieving High-Temperature Oxidation and Corrosion Resistance in Fe-Mn-Cr-Al-Cu-C TWIP Steel via Annealing Control [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(4): 642-656. |
[5] | Chao Hai, Yuetong Zhu, Cuiwei Du, Xiaogang Li. Effect of Retained Austenite on the Corrosion Resistance of High-Strength Low-Carbon Steel in Artificial Seawater [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(4): 657-671. |
[6] | Yifei Gao, Peng Zhang, Pan Ren, Yingfei Yang, Guofeng Han, Wenbo Du, Wei Li, Qiwei Wang. Effect of CeO2 on the H2O/NaCl-Induced Corrosion Behavior of Ni-Co Coating at 650 °C [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(4): 672-690. |
[7] | Nafiseh Mollaei, Seyed Mahmood Fatemi, Mohammad Reza Aboutalebi, Seyed Hossein Razavi, Wiktor Bednarczyk. Microstructure, Texture, Mechanical Properties, and Corrosion Behavior of Biodegradable Zn-0.2Mg Alloy Processed by Multi-Directional Forging [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 507-525. |
[8] | Jingxiang Xu, Yuyan Yang, Ruiyang Huang, Xinwei Yuan, Huakang Bian, Zhenhua Chu, Yang Wang, Yanhua Lei. Enhancing the Corrosion Resistance of FeNiCoCrW0.2Al0.1 High-Entropy Alloy in 3.5 wt% NaCl Solution by Bilayer Passivation [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 407-418. |
[9] | Jing Wang, Xuejian Wang, Zongning Chen, Huijun Kang, Tongmin Wang, Enyu Guo. In Vitro Corrosion Behavior and Mechanical Property of Novel Mg-Sn-In-Ga Alloys for Orthopedic Applications [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 353-366. |
[10] | Xiaoming Liu, Fengyang Quan, Yuan Gao, Shaodong Zhang, Jianbin Wang, Zhijun Wang, Junjie Li, Feng He, Jincheng Wang. Comparison of Hot Corrosion Behavior of Ni36Fe34Al17Cr10Mo1Ti2 and Ni34Co25Fe12Al15Cr12W2 Alloys in NaCl-KCl-Na2SO4 Salt [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(2): 205-217. |
[11] | Lingxiao Du, Hang Ding, Yun Xie, Li Ji, Wanbin Chen, Yunze Xu. Effect of Laser Energy Density on Microstructures and Properties of Additively Manufactured AlCoCrFeNi2.1 Eutectic High-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(2): 233-244. |
[12] | Zheng Liu, De-Chun Ren, Lian-Min Zhang, Ai-Li Ma, Hai-Bin Ji, Yu-Gui Zheng. Synergistic Improvement in Ductility and Hot Nitric Acid Corrosion Resistance of LPBF Ti-6Al-4V Alloy via Hot Isostatic Pressing [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(1): 102-106. |
[13] | Manzu Xu, Leipeng Xie, Shasha Yang, Chengguo Sui, Qunchang Wang, Qihua Long, Minghui Chen, Fuhui Wang. Heterostructured NiCrTi Alloy Prepared by Spark Plasma Sintering with Enhanced Mechanical Properties, Corrosion and Tribocorrosion Resistance [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(1): 164-176. |
[14] | Jin-Xiu Li, Jun-Xiu Chen, M. A. Siddiqui, S. K. Kolawole, Yang Yang, Ying Shen, Jian-Ping Yang, Jian-Hua Wang, Xu-Ping Su. Enhancing Corrosion Resistance and Antibacterial Properties of ZK60 Magnesium Alloy Using Micro-Arc Oxidation Coating Containing Nano-Zinc Oxide [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(1): 45-58. |
[15] | Li-Lan Gao, Jiang Ma, Yan-Song Tan, Xiao-Hao Sun, Qi-Jun Gao, De-Bao Liu, Chun-Qiu Zhang. Effect of Free-End Torsion on the Corrosion and Mechanical Properties for Mg-3Zn-0.2Ca Alloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(1): 59-70. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||