Acta Metallurgica Sinica (English Letters) ›› 2025, Vol. 38 ›› Issue (6): 925-945.DOI: 10.1007/s40195-025-01819-z
Previous Articles Next Articles
Chenzhi Xing1,2, Ming-Hsien Lee3, Gongwang Cao2,4, Yuwei Liu2,4, Quanzhong Guo2,4, Zhenyao Wang2,4(), Chuan Wang2,4(
)
Received:
2024-08-27
Revised:
2024-10-23
Accepted:
2024-11-27
Online:
2025-06-10
Published:
2025-03-22
Contact:
Zhenyao Wang, About author:
First author contact:Co first author: Chenzhi Xing and Ming-Hsien Lee.
Chenzhi Xing, Ming-Hsien Lee, Gongwang Cao, Yuwei Liu, Quanzhong Guo, Zhenyao Wang, Chuan Wang. Discoloration Process of Minted Copper-Nickel Alloys in Chloride Ion-Containing Environments: Experimental and DFT Research[J]. Acta Metallurgica Sinica (English Letters), 2025, 38(6): 925-945.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 Macroscopic morphology, L* values a, and UV-VIS absorption spectrum c of the samples immersed in 0.05 mol/L Cl-environment. The a* and b* values b of the sample after immersing in solutions of different concentrations
Fig. 2 OCP values a of copper-nickel alloys samples immersed for 16 h under different Cl− concentrations. Potentiodynamic polarization curve measured in 0 mol/L b, 0.05 mol/L c, 0.1 mol/L d Cl− environment
Fig. 2 OCP values a of copper-nickel alloys samples immersed for 16 h under different Cl− concentrations. Potentiodynamic polarization curve measured in 0 mol/L b, 0.05 mol/L c, 0.1 mol/L d Cl− environment
Fig. 3 Nyquist a, d, g and Bode diagrams b, c, e, f, h, i of copper-nickel alloys immersed in a-c 0 mol/L, d-f 0.05 mol/L and g-i 0.1 mol/L Cl− environment. The equivalent circuits j, k used to fit the EIS spectra of copper-nickel alloys samples
Solution-time | O (wt%) | Cl (wt%) | Ni (wt%) | Cu (wt%) |
---|---|---|---|---|
0 mol/L-1 h | 0.18 | 0 | 19.56 | 80.27 |
0 mol/L-9 h | 0.54 | 0 | 19.12 | 80.34 |
0 mol/L-16 h | 0.55 | 0 | 19.2 | 80.25 |
0.05 mol/L-1 h | 0.91 | 0 | 19.14 | 79.95 |
0.05 mol/L-3 h | 1.89 | 0 | 17.89 | 80.22 |
0.05 mol/L-6 h | 2.47 | 0 | 16.91 | 80.62 |
0.05 mol/L-9 h | 4.47 | 0 | 13.5 | 82.03 |
0.05 mol/L-12 h | 4.32 | 0 | 15.14 | 80.54 |
0.05 mol/L-16 h | 4.95 | 0.11 | 13.87 | 81.07 |
0.1 mol/L-1 h | 1.16 | 0 | 17.94 | 80.9 |
0.1 mol/L-9 h | 5.76 | 0.11 | 11.15 | 82.98 |
0.1 mol/L-16 h | 6.78 | 0.18 | 9.26 | 83.79 |
Table 1 Elemental analysis of the specimen surface by EDS
Solution-time | O (wt%) | Cl (wt%) | Ni (wt%) | Cu (wt%) |
---|---|---|---|---|
0 mol/L-1 h | 0.18 | 0 | 19.56 | 80.27 |
0 mol/L-9 h | 0.54 | 0 | 19.12 | 80.34 |
0 mol/L-16 h | 0.55 | 0 | 19.2 | 80.25 |
0.05 mol/L-1 h | 0.91 | 0 | 19.14 | 79.95 |
0.05 mol/L-3 h | 1.89 | 0 | 17.89 | 80.22 |
0.05 mol/L-6 h | 2.47 | 0 | 16.91 | 80.62 |
0.05 mol/L-9 h | 4.47 | 0 | 13.5 | 82.03 |
0.05 mol/L-12 h | 4.32 | 0 | 15.14 | 80.54 |
0.05 mol/L-16 h | 4.95 | 0.11 | 13.87 | 81.07 |
0.1 mol/L-1 h | 1.16 | 0 | 17.94 | 80.9 |
0.1 mol/L-9 h | 5.76 | 0.11 | 11.15 | 82.98 |
0.1 mol/L-16 h | 6.78 | 0.18 | 9.26 | 83.79 |
Fig. 8 XRD pattern a of the corrosion products on copper-nickel alloys immersed in 0.05 mol/L Cl− solution. The morphology of corrosion products b actually observed and corresponding schematic diagram c
Fig. 12 Surface work functions of clean metal a, adsorption structures b, and three kinds of corrosion products f. Adsorption energy c of Cl and O on metal surfaces. Surface energy density d of pure copper and Cu3Ni alloys and d-band centers e of pure copper and Cu3Ni alloys
Fig. 13 Fitting curve of the relationship between the surface work function of pure copper with the coverage of chloride ions and the open circuit potential with the concentration of chloride ions
EVCu (eV) | EVNi (eV) | ||
---|---|---|---|
EVCu1 | 4.38337 | EVNi1 | 5.17386 |
EVCu2 | 4.88267 | EVNi2 | 6.08696 |
EVCu3 | 4.23967 | EVNi3 | 5.67346 |
EVCu4 | 3.74727 | EVNi4 | 5.30506 |
EVCu5 | 3.70717 | EVNi5 | 4.98496 |
Table 2 Vacancy formation energy
EVCu (eV) | EVNi (eV) | ||
---|---|---|---|
EVCu1 | 4.38337 | EVNi1 | 5.17386 |
EVCu2 | 4.88267 | EVNi2 | 6.08696 |
EVCu3 | 4.23967 | EVNi3 | 5.67346 |
EVCu4 | 3.74727 | EVNi4 | 5.30506 |
EVCu5 | 3.70717 | EVNi5 | 4.98496 |
Fig. 15 Transition state search results of Cu in model 1 a, b, model 2 c, d and model 4 g, h. Transition state search results of Ni in model 2 e, model 3 f and model 4 i, j. Transition state confirmation results k, l which indicates that f, h are indeed transition states
Barrier from reactant (eV) | Barrier from product (eV) | |
---|---|---|
M4_Cu_Oxygen-sharing | 0.85185 | 0.82296 |
M4_Cu_Non-oxygen-sharing | 0.31061 | 0.31585 |
M4_Ni_Oxygen-sharing | 1.48924 | 1.48854 |
M4_Ni_Non-oxygen-sharing | 0.36995 | 0.36305 |
M2_Cu_Oxygen-sharing | 1.13370 | 1.13359 |
M2_Cu_Non-oxygen-sharing | 0.38777 | 0.39420 |
M2_Ni_Oxygen-sharing | 1.63745 | 1.63727 |
M3_Ni_Non-oxygen-sharing | 0.49776 | 0.49838 |
M1_Cu_Oxygen-sharing | 0.67167 | 0.67126 |
M1_Cu_Non-oxygen-sharing | 0.21859 | 0.21862 |
Table 3 Migration barrier
Barrier from reactant (eV) | Barrier from product (eV) | |
---|---|---|
M4_Cu_Oxygen-sharing | 0.85185 | 0.82296 |
M4_Cu_Non-oxygen-sharing | 0.31061 | 0.31585 |
M4_Ni_Oxygen-sharing | 1.48924 | 1.48854 |
M4_Ni_Non-oxygen-sharing | 0.36995 | 0.36305 |
M2_Cu_Oxygen-sharing | 1.13370 | 1.13359 |
M2_Cu_Non-oxygen-sharing | 0.38777 | 0.39420 |
M2_Ni_Oxygen-sharing | 1.63745 | 1.63727 |
M3_Ni_Non-oxygen-sharing | 0.49776 | 0.49838 |
M1_Cu_Oxygen-sharing | 0.67167 | 0.67126 |
M1_Cu_Non-oxygen-sharing | 0.21859 | 0.21862 |
Ea (eV) | Q (eV) | v (s−1) | D (m2 s−1) | |
---|---|---|---|---|
M4_Cu_Oxygen-sharing | 0.85185 | 4.59912 | 2.66394 × 1012 | 4.04878 × 10−85 |
M4_Cu_Non-oxygen-sharing | 0.31061 | 4.05788 | 1.60861 × 1012 | 3.47874 × 10−76 |
M4_Ni_Oxygen-sharing | 1.48924 | 6.7943 | 3.6647 × 1012 | 4.1888 × 10−122 |
M4_Ni_Non-oxygen-sharing | 0.36995 | 5.67501 | 1.82653 × 1012 | 1.7723 × 10−103 |
Table 4 Calculated results of diffusion coefficient
Ea (eV) | Q (eV) | v (s−1) | D (m2 s−1) | |
---|---|---|---|---|
M4_Cu_Oxygen-sharing | 0.85185 | 4.59912 | 2.66394 × 1012 | 4.04878 × 10−85 |
M4_Cu_Non-oxygen-sharing | 0.31061 | 4.05788 | 1.60861 × 1012 | 3.47874 × 10−76 |
M4_Ni_Oxygen-sharing | 1.48924 | 6.7943 | 3.6647 × 1012 | 4.1888 × 10−122 |
M4_Ni_Non-oxygen-sharing | 0.36995 | 5.67501 | 1.82653 × 1012 | 1.7723 × 10−103 |
[1] | M. Mödlinger, M.H. Kuijpers, D. Braekmans, D. Berger, J. Archaeol. Sci. 88, 14 (2017) |
[2] | O. Mecking, J. Archaeol. Sci. 121, 105199 (2020) |
[3] | Y. Pu, S. Chen, Y. Hou, S. Hou, F. Feng, Z. Guo, C. Zhu, Y.F. Cheng, Corros. Sci. 230, 111947 (2024) |
[4] | Y. Pu, S. Chen, C. Man, Y. Hou, H. Feng, W. Wang, W. Li, Y.F. Cheng, D. Tang, Corros. Sci. 225, 111617 (2023) |
[5] | Y. Pu, W. Dou, Y.F. Cheng, S. Chen, Z. Xu, Z. Chen, Corros. Sci. 211, 110911 (2023) |
[6] | O. Papadopoulou, P. Vassiliou, Corros. Mater. Degrad. 2, 227 (2021) |
[7] | E. Apchain, D. Neff, J.P. Gallien, N. Nuns, P. Berger, A. Noumowé, P. Dillmann, Corros. Sci. 183, 109319 (2021) |
[8] | K. Ding, S. Liu, W. Cheng, J. Du, L. Fan, J. Hou, L. Xu, J. Mater. Eng. Perform. 30, 6027 (2021) |
[9] | D. Ashkenazi, A. Inberg, D. Cvikel, J. Min. Metall. B 54, 101 (2018) |
[10] | Y. Jiang, W.J. Zhang, X.J. Mi, G.J. Huang, H.F. Xie, X. Feng, L.J. Peng, Z. Yang, Rare Met. 41, 4041 (2022) |
[11] |
C. Leygraf, T. Chang, G. Herting, I.O. Wallinder, Corros. Sci. 157, 337 (2019)
DOI |
[12] | H.H. Uhlig, Z. Elektrochem, Ber. Bunsenges. Phys. Chem. 62, 700 (1958) |
[13] | H.H. Uhlig, Trans. Electrochem. Soc. 85, 307 (1944) |
[14] | J. Crousier, A.M. Beccaria, Mater. Corros. 41, 185 (1990) |
[15] | A.M. Beccaria, J. Crousier, Br. Corros. J. 24, 49 (1989) |
[16] | L. Wu, A. Ma, L. Zhang, G. Li, L. Hu, Z. Wang, Y. Zheng, Metals 13, 401 (2023) |
[17] | A. Ma, S. Jiang, Y. Zheng, W. Ke, Corros. Sci. 91, 245 (2015) |
[18] | W.A. Badawy, K.M. Ismail, A.M. Fathi, Electrochim. Acta 50, 3603 (2005) |
[19] | H. Nady, M. El-Rabiei, M. Samy, W. Badawy, J. Bio-Tribo-Corros. 6, 22 (2020) |
[20] | R.T. Loto, Chem. Data Collect. 35, 100755 (2021) |
[21] | I. Ukaga, P. Okafor, I.B. Onyeachu, A.I. Ikeuba, D.I. Njoku, ater. Chem. Phys. 296, 127313 (2023) |
[22] | T. Jin, W. Zhang, N. Li, X. Liu, L. Han, W. Dai, Materials 12, 1869 (2019) |
[23] | C.M. Deng, Z. Liu, D.H. Xia, Y. Behnamian, W. Hu, Corros. Sci. 228, 111821 (2024) |
[24] |
I. Hamidah, A. Solehudin, A. Hamdani, L. Hasanah, K. Khairurrijal, T. Kurniawan, R. Mamat, R. Maryanti, A.B.D. Nandiyanto, B. Hammouti, Alex. Eng. J. 60, 2235 (2021)
DOI |
[25] | P. Muangtong, A. Rodchanarowan, D. Chaysuwan, N. Chanlek, R. Goodall, Corros. Sci. 172, 108740 (2020) |
[26] | H. Parangusan, J. Bhadra, N. Al-Thani, Emergent Mater. 4, 1187 (2021) |
[27] | Z. Wang, A. Seyeux, S. Zanna, V. Maurice, P. Marcus, Electrochim. Acta 329, 135159 (2020) |
[28] | X. Zhu, L. Xu, P. Wu, C. Xiao, Y. Wang, S. Lin, J. Zhao, Constr. Build. Mater. 438, 137080 (2024) |
[29] | S. Qiu, H. Liu, M. Jiang, S. Min, Y. Gu, Q. Wang, J. Yang, X. Li, Z. Chen, J. Hou, Acta Metall. Sin.-Engl. Lett. 36, 529 (2023) |
[30] | B. Zhang, Y. Mao, Z. Liu, J. Liang, J. Zhang, M. Wang, J. Su, K. Shen, Acta Metall. Sin.-Engl. Lett. 36, 1159 (2023) |
[31] | X. Liang, J. Bai, J. Gu, Z. Guan, H. Yan, Y. Zhang, C. Esling, X. Zhao, L. Zuo, Acta Metall. Sin.-Engl. Lett. 35, 1034 (2022) |
[32] | J. Tang, Y. Wang, Y. Jiang, J. Yao, H. Zhang, Acta Metall. Sin.-Engl. Lett. 35, 1572 (2022) |
[33] | Y. Ji, Q. Hu, D.H. Xia, J.L. Luo, J. Electrochem. Soc. 170, 041505 (2023) |
[34] | E. Baran Aydın, E. Başaran, S. Ateş, R. Çakmak, Anti-Corros. Method. M 71, 167 (2024) |
[35] | V. Ökten, R. Yıldız, G. Sığırcık, Anti-Corros. Method. M (ahead-of-print) (2023) |
[36] | H. Feng, H.B. Li, Z.H. Jiang, T. Zhang, N. Dong, S.C. Zhang, P.D. Han, S. Zhao, Z.G. Chen, Corros. Sci. 158, 108081 (2019) |
[37] | C.D. Taylor, H. Ke, Corros. Rev. 39, 177 (2021) |
[38] | B. Anandkumar, N.G. Krishna, R.V. Solomon, T. Nandakumar, J. Philip, J. Environ. Chem. Eng. 11, 109842 (2023) |
[39] | J. Duan, Z. Jiang, X. Zeng, Y. Li, S. Peng, C. Dong, G. Zhang, Corros. Sci. 227, 111782 (2024) |
[40] | E. Vernack, D. Costa, P. Tingaut, P. Marcus, Corros. Sci. 174, 108840 (2020) |
[41] | D. Kumar, N. Jain, V. Jain, B. Rai, Appl. Surf. Sci. 514, 145905 (2020) |
[42] | S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I. Probert, K. Refson, M.C. Payne, Z. Krist-Cryst, Mater. 220, 567 (2005) |
[43] |
J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)
DOI PMID |
[44] | K. Kalubowila, K. Jayathileka, L. Kumara, K. Ohara, S. Kohara, O. Sakata, M. Gunewardene, J. Jayasundara, D. Dissanayake, J. Jayanetti, J. Electrochem. Soc. 166, D113 (2019) |
[45] | I. Hamdani, A.N. Bhaskarwar, Sol. Energy Mater. Sol. Cells. 240, 111719 (2022) |
[46] | L. Wang, N. De Tacconi, C. Chenthamarakshan, K. Rajeshwar, M. Tao, Thin Solid Films 515, 3090 (2007) |
[47] | G. Nardin, L. Randaccio, E. Zangrando, S. Bruckner, G. Vlaic, F. Buffa, J. Chem. Soc. Dalton Trans. 3, 403 (1991) |
[48] | G. Schön, Surf. Sci. 35, 96 (1973) |
[49] | M. Naddaf, O. Mrad, A. Al-Zier, Appl. Phys. A 115, 1345 (2014) |
[50] | S. Wu, X. Huang, H. Zhang, Z. Wei, M. Wang, ACS Catal. 12, 58 (2021) |
[51] | Y. Zhao, H. Zhang, Y. Xu, S. Wang, Y. Xu, S. Wang, X. Ma, J. Energy Chem. 49, 248 (2020) |
[52] | T. Yano, M. Ebizuka, S. Shibata, M. Yamane, J. Electron. Spectrosc. Relat. Phenom. 131, 133 (2003) |
[53] | J. Crêpellière, P.L. Popa, N. Bahlawane, R. Leturcq, F. Werner, S. Siebentritt, D. Lenoble, J. Mater. Chem. C 4, 4278 (2016) |
[54] | W. Li, D. Li, Acta Mater. 54, 445 (2006) |
[55] | W. Li, D. Li, Appl. Surf. Sci. 240, 388 (2005) |
[56] | C. Örnek, C. Leygraf, J. Pan, Corros. Eng. Sci. Technol. 54, 185 (2019) |
[57] | M. Li, C.S. Cucinotta, A.P. Horsfield, J. Phys. Chem. Solids 170, 110936 (2022) |
[58] | V. Mansfeldova, M. Zlamalova, H. Tarabkova, P. Janda, M. Vorokhta, L. Piliai, L. Kavan, J. Phys. Chem. C 125, 1902 (2021) |
[59] | E. Wachowicz, A. Kiejna, J. Phys. Condens. Matter 13, 10767 (2001) |
[60] | W.X. Li, C. Stampfl, M. Scheffler, Phys. Rev. B 65, 075407 (2002) |
[61] | S. Trasatti, Electrochim. Acta 36, 1659 (1991) |
[62] | S. Logan, J. Chem. Educ. 59, 279 (1982) |
[63] | G.H. Vineyard, J. Phys. Chem. Solids 3, 121 (1957) |
[64] | R. Kutner, Phys. Lett. A 81, 239 (1981) |
[65] | C. Wert, C. Zener, Phys. Rev. 76, 1169 (1949) |
[66] | D.O. Scanlon, B.J. Morgan, G.W. Watson, A. Walsh, Phys. Rev. Lett. 103, 096405 (2009) |
[67] | X. Nie, S.H. Wei, S. Zhang, Phys. Rev. Lett. 88, 066405 (2002) |
[68] | J. Hu, D. Payne, R. Egdell, P.A. Glans, T. Learmonth, K. Smith, J. Guo, N. Harrison, Phys. Rev. B 77, 155115 (2008) |
[69] | Y. Nakano, S. Saeki, T. Morikawa, Appl. Phys. Lett. 94, 66 (2009) |
[70] | M. Nolan, S.D. Elliott, Phys. Chem. Chem. Phys. 8, 5350 (2006) |
[71] | X. Lu, J.N. Hart, Y. Yao, C.Y. Toe, J. Scott, Y.H. Ng, Mater. Today Energy 16, 100422 (2020) |
[72] | Z. Zhang, H. Wu, Z. Yu, R. Song, K. Qian, X. Chen, J. Tian, W. Zhang, W. Huang, Angew. Chem. Int. Ed. 58, 4276 (2019) |
[73] | Y.Y. Song, G.C. Wang, J. Phys. Chem. C 122, 21500 (2018) |
[74] | H. Raebiger, S. Lany, A. Zunger, Phys. Rev. B 76, 045209 (2007) |
[1] | Yunhu Ding, Yingpeng Li, Hongfang Liu, Wenhao Wang, Yijun Wei, Haitao Duan, Wen Zhan. Corrosion Evolution Behavior of Ti/Zr/Oligomeric Epoxy Silane Composite Chemical Conversion Coatings on Multi-metals [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(6): 889-903. |
[2] | Jing Wang, Xuejian Wang, Zongning Chen, Huijun Kang, Tongmin Wang, Enyu Guo. In Vitro Corrosion Behavior and Mechanical Property of Novel Mg-Sn-In-Ga Alloys for Orthopedic Applications [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 353-366. |
[3] | Xiaoming Liu, Fengyang Quan, Yuan Gao, Shaodong Zhang, Jianbin Wang, Zhijun Wang, Junjie Li, Feng He, Jincheng Wang. Comparison of Hot Corrosion Behavior of Ni36Fe34Al17Cr10Mo1Ti2 and Ni34Co25Fe12Al15Cr12W2 Alloys in NaCl-KCl-Na2SO4 Salt [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(2): 205-217. |
[4] | Jin-Xiu Li, Jun-Xiu Chen, M. A. Siddiqui, S. K. Kolawole, Yang Yang, Ying Shen, Jian-Ping Yang, Jian-Hua Wang, Xu-Ping Su. Enhancing Corrosion Resistance and Antibacterial Properties of ZK60 Magnesium Alloy Using Micro-Arc Oxidation Coating Containing Nano-Zinc Oxide [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(1): 45-58. |
[5] | Xingpeng Liao, Jialuo Huang, Zhilin Liu, Jingru Guo, Dajiang Zheng, Pengbo Chen, Fuyong Cao. Degradation Behavior of Zn-Cu Stents with Different Coatings in Sodium Chloride Solution [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(9): 1564-1580. |
[6] | Jingjing Peng, Jing Liu, Shen Zhang, Zhihui Wang, Xian Zhang, Kaiming Wu. Effects of Environmental Factors on Corrosion Behavior of E690 Steel in Simulated Marine Environment [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(4): 678-694. |
[7] | Jinchao Jiao, Jin Zhang, Yong Lian, Shengli Han, Kaihong Zheng, Fusheng Pan. Influence of Micro/Nano-Ti Particles on the Corrosion Behavior of AZ31-Ti Composites [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(3): 484-498. |
[8] | Ying Shen, Xianfeng Shan, Iniobong P. Etim, Muhammad Ali Siddiqui, Yang Yang, Zewen Shi, Xuping Su, Junxiu Chen. Comparative Study of the Effects of Nano ZnO and CuO on the Biodegradation, Biocompatibility, and Antibacterial Properties of Micro-arc Oxidation Coating of Magnesium Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(2): 242-254. |
[9] | Gang Niu, Rui Yuan, R. D. K. Misra, Na Gong, Zhi-Hui Zhang, Hao-Xiu Chen, Hui-Bin Wu, Cheng-Jia Shang, Xin-Ping Mao. Effect of La on the Corrosion Behavior and Mechanism of 3Ni Weathering Steel in a Simulated Marine Atmospheric Environment [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(2): 308-324. |
[10] | Zhibin Liu, Guangya Zhu, Wenkai Li, Di Mei, Peihua Du, Yufeng Sun, Shijie Zhu, Shaokang Guan. Effect of Rolling Temperature on the Mechanical Properties and Corrosion Behavior of Mg-Zn-Y-Nd Alloy Thin Sheets [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(10): 1721-1734. |
[11] | Yu-Hang Chu, Liang-Yu Chen, Bo-Yuan Qin, Wenbin Gao, Fanmin Shang, Hong-Yu Yang, Lina Zhang, Peng Qin, Lai-Chang Zhang. Unveiling the Contribution of Lactic Acid to the Passivation Behavior of Ti-6Al-4V Fabricated by Laser Powder Bed Fusion in Hank’s Solution [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 102-118. |
[12] | Kai Hu, Lei Zhang, Yuanjie Zhang, Bo Song, Shifeng Wen, Qi Liu, Yusheng Shi. Electrochemical Corrosion Behavior and Mechanical Response of Selective Laser Melted Porous Metallic Biomaterials [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(8): 1235-1246. |
[13] | Xian Zhang, Li Gong, Yanpeng Feng, Zhihui Wang, Miao Yang, Lin Cheng, Jing Liu, Kaiming Wu. Effect of Retained Austenite on Corrosion Behavior of Ultrafine Bainitic Steel in Marine Environment [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(5): 717-731. |
[14] | Xin Wei, Yupeng Sun, Junhua Dong, Nan Chen, Qiying Ren, Wei Ke. Effects of Aerobic and Anoxic Conditions on the Corrosion Behavior of NiCu Low Alloy Steel in the Simulated Groundwater Solutions [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(5): 745-757. |
[15] | Xuejian Wang, Huaqiang Xiao, Keqiang Su, Bo Lin, Tongmin Wang, Enyu Guo. Effect of Extrusion Temperature on the Mechanical Properties and Corrosion Behavior of LZ91 Alloys [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(11): 1822-1832. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||