Acta Metallurgica Sinica (English Letters) ›› 2025, Vol. 38 ›› Issue (3): 507-525.DOI: 10.1007/s40195-024-01792-z
Previous Articles Next Articles
Nafiseh Mollaei1, Seyed Mahmood Fatemi2,3(), Mohammad Reza Aboutalebi1, Seyed Hossein Razavi1, Wiktor Bednarczyk4
Received:
2024-07-17
Revised:
2024-08-18
Accepted:
2024-09-02
Online:
2025-03-10
Published:
2024-11-19
Contact:
Seyed Mahmood Fatemi, seyed.mahmood.fatemi@upc.edu
Nafiseh Mollaei, Seyed Mahmood Fatemi, Mohammad Reza Aboutalebi, Seyed Hossein Razavi, Wiktor Bednarczyk. Microstructure, Texture, Mechanical Properties, and Corrosion Behavior of Biodegradable Zn-0.2Mg Alloy Processed by Multi-Directional Forging[J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 507-525.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 Schematic representation of: a MDF corresponding to one pass and b sample extraction for tensile, metallographic, and corrosion testing experiments
Chemical | MgCl2∙6H2O | NaHCO3 | CaCl2 | K2HPO4∙3H2O | NaCl | HCl (1 mol/L) | KCl | Na2SO4 | TRIS buffer |
---|---|---|---|---|---|---|---|---|---|
Amount (/L) | 0.311 g | 0.352 g | 0.293 g | 0.23 g | 8.036 g | 40 ml | 0.225 g | 0.072 g | 6.063 g |
Table 1 SBF composition employed in this study
Chemical | MgCl2∙6H2O | NaHCO3 | CaCl2 | K2HPO4∙3H2O | NaCl | HCl (1 mol/L) | KCl | Na2SO4 | TRIS buffer |
---|---|---|---|---|---|---|---|---|---|
Amount (/L) | 0.311 g | 0.352 g | 0.293 g | 0.23 g | 8.036 g | 40 ml | 0.225 g | 0.072 g | 6.063 g |
Fig. 2 a IPF map, b SEM micrograph, c XRD pattern, d TEM images of the eutectic structure with the corresponding SAED pattern of the network phase, e measured pole figures of the as-extruded Zn-0.2Mg alloy
Fig. 3 Microstructures of the experimental alloy deformed by MDF: a 1 pass; b 2 passes; c 3 passes; d a magnified view of recrystallized grains developed after 3 MDF passes
Fig. 5 GOS map of the MDFed alloys: a 1 pass, b 2 passes, c 3 passes, d area versus GOS at various deformation passes, e the evolutions of size and fraction of DRX grains as a function of number of passes
Fig. 6 a IPF of the experimental alloy deformed to strain 0.93, b the misorientation profiles along the AB line in a, c the misorientation profiles along the CD line in a
Fig. 9 a EBSD map of deformed grain in the Zn-0.2Mg alloy after two forging passes, b the misorientation gradient measured along A-B line, c the misorientation gradient measured along C-D line, d the crystallographic relationship between P and G. Here, P and G represent parent grains and recrystallized grains, respectively
Fig. 12 a Engineering stress vs. engineering strain flow behavior of the as-extruded and MDF-processed materials, b mechanical properties of the studied alloys
Sample | Average SF | ΡGND (1014 m−2) | Microhardness (HV) | ||
---|---|---|---|---|---|
Basal | Prismatic | Pyramidal | |||
Zn-Mg (AE) | 0.39 | 0.23 | 0.26 | 0.03 | 45 ± 3 |
Zn-Mg (1 pass) | 0.29 | 0.32 | 0.39 | 6.7 | 54 ± 2 |
Zn-Mg (2 passes) | 0.25 | 0.38 | 0.41 | 5.9 | 72 ± 3 |
Zn-Mg (3 passes) | 0.23 | 0.41 | 0.43 | 4.1 | 77 ± 1 |
Table 2 Average Schmid factors for different slip systems, geometrically necessary dislocation density, and Vickers microhardness of as-extruded and MDF-processed Zn-0.2Mg alloys
Sample | Average SF | ΡGND (1014 m−2) | Microhardness (HV) | ||
---|---|---|---|---|---|
Basal | Prismatic | Pyramidal | |||
Zn-Mg (AE) | 0.39 | 0.23 | 0.26 | 0.03 | 45 ± 3 |
Zn-Mg (1 pass) | 0.29 | 0.32 | 0.39 | 6.7 | 54 ± 2 |
Zn-Mg (2 passes) | 0.25 | 0.38 | 0.41 | 5.9 | 72 ± 3 |
Zn-Mg (3 passes) | 0.23 | 0.41 | 0.43 | 4.1 | 77 ± 1 |
Sample | Corrosion potential Ecorr (V vs. SCE) | Current density Icorr (μA/cm2) | Cathodic slope βc (mV) | Anodic slope βa (mV) | Corrosion rate (mm/year) |
---|---|---|---|---|---|
Pure Zn (AE) | − 0.91 ± 0.17 | 24.53 ± 2.12 | 282.75 ± 5.40 | 52.76 ± 3.51 | 0.34 ± 0.01 |
Zn-0.2Mg (AE) | − 1.01 ± 0.01 | 31.81 ± 4.13 | 236.32 ± 10.38 | 209.53 ± 8.60 | 0.44 ± 0.14 |
Zn-0.2Mg (1 pass) | − 1.11 ± 0.12 | 34.63 ± 1.21 | 392.98 ± 6.50 | 169.30 ± 6.87 | 0.48 ± 0.05 |
Zn-0.2Mg (2 passes) | − 1.17 ± 0.08 | 37.34 ± 2.35 | 410.10 ± 12.50 | 146.98 ± 18.21 | 0.51 ± 0.08 |
Zn-0.2Mg (3 passes) | − 1.15 ± 0.03 | 42.57 ± 3.40 | 412.92 ± 4.80 | 193.78 ± 13.36 | 0.59 ± 0.02 |
Table 3 Electrochemical measurements of the studied specimens in SBF solution
Sample | Corrosion potential Ecorr (V vs. SCE) | Current density Icorr (μA/cm2) | Cathodic slope βc (mV) | Anodic slope βa (mV) | Corrosion rate (mm/year) |
---|---|---|---|---|---|
Pure Zn (AE) | − 0.91 ± 0.17 | 24.53 ± 2.12 | 282.75 ± 5.40 | 52.76 ± 3.51 | 0.34 ± 0.01 |
Zn-0.2Mg (AE) | − 1.01 ± 0.01 | 31.81 ± 4.13 | 236.32 ± 10.38 | 209.53 ± 8.60 | 0.44 ± 0.14 |
Zn-0.2Mg (1 pass) | − 1.11 ± 0.12 | 34.63 ± 1.21 | 392.98 ± 6.50 | 169.30 ± 6.87 | 0.48 ± 0.05 |
Zn-0.2Mg (2 passes) | − 1.17 ± 0.08 | 37.34 ± 2.35 | 410.10 ± 12.50 | 146.98 ± 18.21 | 0.51 ± 0.08 |
Zn-0.2Mg (3 passes) | − 1.15 ± 0.03 | 42.57 ± 3.40 | 412.92 ± 4.80 | 193.78 ± 13.36 | 0.59 ± 0.02 |
Fig. 14 a SEM images of surface morphologies of the studied specimens after polarization treatment: a pure Zn (AE), b Zn-0.2Mg (AE), c Zn-0.2Mg (1 pass MDF), d Zn-0.2Mg (2 passes), e Zn-0.2Mg (3 passes)
Samples | Zn | O | Cl | P | Ca | Mg |
---|---|---|---|---|---|---|
Pure Zn (AE) | 61.49 | 28.89 | 2.99 | 1.66 | 4.26 | 0.71 |
Zn-0.2Mg (AE) | 61.68 | 36.35 | 0.55 | 1.30 | 0 | 0.11 |
Zn-0.2Mg (3 passes MDF) | 60.16 | 41.74 | 0.19 | 1.019 | 0.72 | 0.08 |
Table 4 Results of EDS analysis of corrosion products formed on the investigated samples (wt%)
Samples | Zn | O | Cl | P | Ca | Mg |
---|---|---|---|---|---|---|
Pure Zn (AE) | 61.49 | 28.89 | 2.99 | 1.66 | 4.26 | 0.71 |
Zn-0.2Mg (AE) | 61.68 | 36.35 | 0.55 | 1.30 | 0 | 0.11 |
Zn-0.2Mg (3 passes MDF) | 60.16 | 41.74 | 0.19 | 1.019 | 0.72 | 0.08 |
Fig. 15 EIS diagrams in SBF solution at 37 °C for Pure Zn, Zn-0.2Mg, and 3 passes MDFed Zn-0.2Mg: a Nyquist plots, b Bode magnitude plots, c Bode phase plots, d equivalent circuit
Specimens | Rs (Ω cm2) | Rct (kΩ cm2) | Qct | ZW | |
---|---|---|---|---|---|
Y0 (Ω−1 cm−2 s−n) | n | ||||
Pure Zn (AE) | 107 ± 2 | 9.95 ± 0.12 | 0.73 ± 0.01 | 0.71 ± 0. 04 | 0.00032 |
Zn-0.2Mg (AE) | 112 ± 1 | 7.53 ± 0.24 | 0.64 ± 0.03 | 0.78 ± 0.03 | 0.00045 |
Zn-0.2Mg (3 passes) | 108 ± 1 | 4.21 ± 0.31 | 0.49 ± 0.01 | 0.83 ± 0.01 | 0.00061 |
Table 5 EIS parameters obtained in SBF solution at 37 °C from equivalent circuits of Rs(Qct(Rct ZW)) for pure Zn, Zn-0.2Mg, and Zn-0.2Mg (3 passes) alloys
Specimens | Rs (Ω cm2) | Rct (kΩ cm2) | Qct | ZW | |
---|---|---|---|---|---|
Y0 (Ω−1 cm−2 s−n) | n | ||||
Pure Zn (AE) | 107 ± 2 | 9.95 ± 0.12 | 0.73 ± 0.01 | 0.71 ± 0. 04 | 0.00032 |
Zn-0.2Mg (AE) | 112 ± 1 | 7.53 ± 0.24 | 0.64 ± 0.03 | 0.78 ± 0.03 | 0.00045 |
Zn-0.2Mg (3 passes) | 108 ± 1 | 4.21 ± 0.31 | 0.49 ± 0.01 | 0.83 ± 0.01 | 0.00061 |
[1] |
E. Mostaed, M. Sikora-Jasinska, J.W. Drelich, M. Vedani, Acta Biomater. 71, 1 (2018)
DOI PMID |
[2] | G. Li, H. Yang, Y. Zheng, X. Chen, J. Yang, D. Zhu, L. Ruan, Acta Biomater. 97, 23 (2019) |
[3] | P.K. Bowen, E.R. Shearier, S. Zhao, R.J. Guillory, F. Zhao, J. Goldman, Adv. Healthc. Mater. 5, 1121 (2016) |
[4] | H. Zhou, R. Hou, J. Yang, Y. Sheng, Z. Li, L. Chen, W. Li, X. Wang, J. Alloy. Compd. 840, 155792 (2020) |
[5] | D. Lou, M. Zhang, J. Lv, B. Li, X. Wang, J. Shi, Y. Ren, H. Li, G. Qin, J. Alloy. Compd. 896, 162912 (2022) |
[6] | D. Hernández-Escobar, S. Champagne, H. Yilmazer, B. Dikici, C.J. Boehlert, H. Hermawan, Acta Biomater. 7, 1 (2019) |
[7] | D.W.Y. Toong, J.C.K. Ng, Y. Huang, P.E.H. Wong, H.L. Leo, S.S. Venkatraman, H.Y. Ang, Mat. Insights Prog. 12, 100727 (2020) |
[8] |
E. Mostaed, M. Sikora-Jasinska, A. Mostaed, S. Loffredo, A.G. Demir, B. Previtali, D. Mantovani, R. Beanland, M. Vedani, J. Mech. Behav. Biomed. Mater. 60, 581 (2016)
DOI PMID |
[9] | J. Kubásek, D. Vojt, E. Jablonská, I. Pospí, J. Lipov, T. Ruml, Mater. Sci. Eng. C 58, 24 (2016) |
[10] | L.Q. Wang, Y.P. Ren, S.N. Sun, H. Zhao, S. Li, G.W. Qin, Acta Metall. Sin. -Engl. Lett. 30, 931 (2017) |
[11] | X. Wang, Y. Ma, B. Meng, M. Wan, Mater. Sci. Eng. A 824, 141857 (2021) |
[12] | C. Shen, X. Liu, B. Fan, P. Lan, F. Zhou, X. Li, H. Wang, X. Xiao, L. Li, S. Zhao, Z. Guo, Z. Pu, Y. Zheng, RSC Adv. 6, 86410 (2016) |
[13] |
D. Vojtěch, J. Kubásek, J. Šerák, P. Novák, Acta Biomater. 7, 3515 (2011)
DOI PMID |
[14] | R.N. Harsha, V.M. Kulkarni, B.S. Babu, Mater. Today Proc. 5, 22340 (2018) |
[15] | K. Edalati, A. Bachmaier, V.A. Beloshenko, Y. Beygelzimer, V.D. Blank, Mater. Res. Lett. 4, 163 (2022) |
[16] | G. Faraji, H. Torabzadeh, Mater. Trans. 60, 1316 (2019) |
[17] | P. Guo, F. Li, L. Yang, R. Bagheri, Q. Zhang, B.Q. Li, K. Cho, Z. Song, W. Sun, H. Liu, Mater. Sci. Eng. A 748, 262 (2019) |
[18] | W. Bednarczyk, M. Wątroba, J. Kawałko, P. Bała, Mater. Sci. Eng. A 759, 55 (2019) |
[19] | W. Bednarczyk, J. Kawałko, M. Wątroba, P. Bała, Mater. Sci. Eng. A 723, 126 (2018) |
[20] | W. Bednarczyk, J. Kawałko, M. Wątroba, N. Gao, M.J. Starink, P. Bała, T.G. Langdon, Mater. Sci. Eng. A 776, 139047 (2020) |
[21] | H. Liu, H. Huang, Y. Zhang, Y. Xu, C. Wang, J. Sun, J. Jiang, A. Ma, F. Xue, J. Bai, J. Alloy. Compd. 811, 151987 (2019) |
[22] | M.S. Dambatta, S. Izman, D. Kurniawan, J. King, Saud. Univ. Sci. 29, 455 (2017) |
[23] | G.M. Claudia, G. Ivan, O.M. Laia, J.P. Emilio, G. Maria-Pau, V. Maurizio, C. José Luís, P. Marta, Mater. Des. 228, 10 (2023) |
[24] | H. Huang, G. Li, Q. Jia, D. Bian, S. Guan, O. Kulyasova, R.Z. Valiev, J.V. Rau, Y. Zheng, Acta Biomater. 152, 1 (2022) |
[25] | L. Zhao, X. Zhuo, H. Liu, J. Jiang, A. Ma, J. Mater. Res. Technol. 25, 2619 (2023) |
[26] | M. Wątroba, K. Mech, W. Bednarczyk, J. Kawałko, M. Marciszko-Wiąckowska, M. Marzec, D.E. Shepherd, P. Bała, Mater. Des. 213, 110289 (2022) |
[27] | X. Xiao, B. Wang, E. Liu, H. Liu, L. Liu, W. Xu, S. Ge, J. Shao, J. Mater. Res. Technol. 26, 6287 (2023) |
[28] | W. Zhang, X. Sun, D. Liu, G. Liang, J. Gao, Mater. Today Commun. 39, 108630 (2024) |
[29] | N. Mollaei, S.M. Fatemi, M.R. Abutalebi, S.H. Razavi, Ultrafine Grained. Nanostruct. Mater. 53, 39 (2020) |
[30] | B. Dong, Z. Zhang, J. Yu, X. Che, M. Meng, J. Zhang, J. Alloy. Compd. 823, 53776 (2020) |
[31] | H. Jiang, Y. Liu, Y. Wu, K. Zhao, D. Shan, Y. Zong, J. Mater. Eng. Perform. 28, 3505 (2019) |
[32] | Q.F. Zhu, L. Li, C.Y. Ban, Z.H. Zhao, Y.B. Zuo, J.Z. Cui, Trans. Nonferrous Met. Soc. China 24, 1301 (2014) |
[33] | F. Djavanroodi, M. Ebrahimi, J.F. Nayfeh, Sci. Rep. 9, 1 (2019) |
[34] | S. Jiachen, X. Wang, J. Li, D. Shu, S. Wang, P. Peng, Q. Mao, Vacuum 187, 110116 (2021) |
[35] | A. Kundu, R. Kapoor, R. Tewari, J.K. Chakravartty, Scr. Mater. 58, 235 (2008) |
[36] | G. Salishchev, S. Zherebtsov, S. Malysheva, A. Smyslov, Mater. Trans. 586, 783 (2008) |
[37] | C. Yao, Z. Wang, S.L. Tay, T. Zhu, W. Gao, J. Alloy. Compd. 602, 101 (2014) |
[38] | H.J. Roven, M. Liu, J.C. Werenskiold, Mater. Sci. Eng. A 484, 54 (2010) |
[39] | A. Hadadzadeh, F. Mokdad, M.A. Wells, D.L. Chen, Mater. Sci. Eng. A 709, 285 (2018) |
[40] | S.W. Xu, S. Kamado, T. Honma, Mater. Sci. Eng. A 528, 2385 (2011) |
[41] | F.J. Humphreys, M. Hatherly, Recrystallization textures, in Recrystallization and related annealing phenomena. (Elsevier, 2004), pp. 379-413. https://doi.org/10.1016/B978-008044164-1/50016-5 |
[42] | T. Peng, Q. Wang, J. Lin, M. Liu, H.J. Roven, Mater. Sci. Eng. A 528, 1143 (2011) |
[43] | M.J. Wang, C.Y. Sun, M.W. Fu, Z.L. Liu, L.Y. Qian, J. Alloy. Compd. 820, 153525 (2020) |
[44] | Z. Xu, H. Liu, G. Hu, X. Zhuo, K. Yan, J. Ju, W. Wang, H. Teng, J. Jiang, J. Bai, Acta Metall. Sin. -Engl. Lett. 36, 1833 (2023) |
[45] | L. Ye, H. Liu, C. Sun, X. Zhuo, J. Ju, F. Xue, J. Bai, J. Jiang, Y. Xin, J. Alloy. Compd. 926, 166906 (2022) |
[46] | H. Jin, S. Zhao, R. Guillory, P.K. Bowen, Z. Yin, A. Griebel, J. Schaffer, E.J. Earley, J. Goldman, J.W. Drelich, Mater. Sci. Eng. C 84, 67 (2018) |
[47] | S.M. Fatemi, M. Ghambari, M. Moghaddam, J. Alloy. Compd. 693, 406 (2017) |
[48] | S. Zhong, D. Zhang, S. Chai, J. Zhou, J. Hua, J. Xu, B. Jiang, F. Pan, J. Mater. Res. Technol. 15, 477 (2021) |
[49] | Z. Xu, H. Liu, K. Ren, C. Sun, X. Zhuo, K. Yan, J. Ju, F. Xue, J. Bai, J. Jiang, Mater. Sci. Eng. A 856, 143962 (2022) |
[50] | W. Bednarczyk, M. Wątroba, M. Jain, K. Mech, P. Bazarnik, P. Bała, J. Michler, K. Wieczerzak, Mater. Des. 229, 111897 (2023) |
[51] | G. Dai, J. Niu, Y. Guo, Z. Sun, Z. Dan, H. Chang, L. Zhou, J. Mater. Res. Technol. 15, 1881 (2021) |
[52] | L. Maire, B. Scholtes, C. Moussa, N. Bozzolo, D.P. Mu, A. Settefrati, M. Bernacki, J. Mater. Des. 133, 498 (2017) |
[53] | S. Naghdy, P. Verleysen, R. Petrov, L. Kestens, Mater. Charact. 140, 225 (2018) |
[54] | F. Khodabakhshi, A.P. Gerlich, D. Verma, M. Nosko, M. Haghshenas, Mater. Sci. Eng. A 807, 140873 (2021) |
[55] | P.R. Rios, G.S. Fonseca, J. Scr. Mater. 50, 71 (2004) |
[56] | M. Wa, M. Marciszko-wia, M. Marzec, Mater. Des. 213, 110 (2022) |
[57] |
C. García-Mintegui, L.C. Córdoba, J. Buxadera-Palomero, A. Marquina, E. Jiménez-Piqué, M.P. Ginebra, J.L. Cortina, Bioact. Mater. 6, 4430 (2021)
DOI PMID |
[58] | D. Song, A.B. Ma, J.H. Jiang, P.H. Lin, D.H. Yang, J.F. Fan, Corros. Sci. 53, 362 (2011) |
[59] | K. Raeissi, A. Saatchi, M.A. Golozar, J.A. Szpunar, J. Appl. Electrochem. 34, 1249 (2004) |
[60] | X. Liu, J. Sun, F. Zhou, Y. Yang, R. Chang, K. Qiu, Z. Pu, L. Li, Y. Zheng, J. Mater. Des. 94, 95 (2016) |
[61] | S.K. Ghosh, G.K. Dey, R.O. Dusane, A.K. Grover, J. Alloy. Compd. 426, 235 (2006) |
[62] | M. Sikora-Jasinska, J. Goldman, E. Mostaed, J.W. Drelich, Surf. Innov. 8, 234 (2020) |
[63] |
N.O. Laschuk, E.B. Easton, O.V. Zenkina, RSC Adv. 11, 27925 (2021)
DOI PMID |
[64] | J. Yang, J. Wu, C.Y. Zhang, S.D. Zhang, B.J. Yang, W. Emori, J.Q. Wang, J. Alloy. Compd. 819, 152943 (2020) |
[65] | R. Ummethala, F. Despang, M. Gelinsky, B. Basu, Electrochim. Acta 56, 3809 (2011) |
[66] |
M. Oldenburger, B. Bedürftig, A. Gruhle, F. Grimsmann, E. Richter, R. Findeisen, A. Hintennach, J. Energy Storage 21, 272 (2019)
DOI |
[67] | D.T. Price, MEMS and electrical impedance spectroscopy (EIS) for non-invasive measurement of cells, in MEMS for biomedical applications. (Woodhead Publishing, Sawston, 2012), pp. 97-119 |
[1] | Yao Zhang, Hongtao Wang, Zhongtao Lu, Zifeng Li, Pengfei Wen, Xiaobin Feng, Guodong Li, Bo Duan, Pengcheng Zhai. Effect of Ag Vacancies on the Mechanical Properties of Ag2S Thermoelectric Semiconductor [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 869-875. |
[2] | X. W. Shang, Z. G. Lu, R. P. Guo, L. Xu. Influence of Hot Isostatic Pressing Temperature on Microstructure and Mechanical Properties of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si Alloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(4): 627-641. |
[3] | Yang Feng, Shuai Wang, Yang Zhao, Li-Qing Chen. Achieving High-Temperature Oxidation and Corrosion Resistance in Fe-Mn-Cr-Al-Cu-C TWIP Steel via Annealing Control [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(4): 642-656. |
[4] | Yaoxiang Geng, Keying Lv, Chunfeng Zai, Zhijie Zhang, Anil Kunwar. A High-Strength TiB2-Modified Al-Si-Mg-Zr Alloy Fabricated by Laser Powder-Bed Fusion [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(4): 542-554. |
[5] | Haijian Liu, Tianle Li, Xifeng Li, Huiping Wu, Zhiqiang Wang, Jun Chen. Strength Optimization of Diffusion-Bonded Ti2AlNb Alloy by Post-Heat Treatment [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(4): 614-626. |
[6] | Jing Wang, Xuejian Wang, Zongning Chen, Huijun Kang, Tongmin Wang, Enyu Guo. In Vitro Corrosion Behavior and Mechanical Property of Novel Mg-Sn-In-Ga Alloys for Orthopedic Applications [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 353-366. |
[7] | Xiaotong Lu, Pingyun Yuan, Zhengquan Wang, Xiaocheng Li, Hanyuan Liu, Wenhao Zhou, Kun Sun, Yongliang Mu. Mechanical Properties and Corrosion Behavior of Porous Zn Alloy as Biodegradable Materials [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 367-382. |
[8] | Yifan Li, Shengyao Ma, Xinrui Zhang, Tong Xi, Chunguang Yang, Hanyu Zhao, Ke Yang. Copper Precipitation Behavior and Mechanical Properties of Cu-Bearing Ferritic Stainless Steel with Different Cr Addition [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 383-395. |
[9] | Hongbin Liu, Zhenqiang Xing, Yitong Yang, Jingyu Pang, Wen Li, Zhengwang Zhu, Long Zhang, Aimin Wang, Haifeng Zhang, Hongwei Zhang. A Novel BCC/B2 Structural Nb38Ti35Al15V6Cr4(TaHfMoW)2 Refractory High-Entropy Alloy with Excellent Specific Yield Strength-Plasticity Synergy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 396-406. |
[10] | Jian Dong, Jufu Jiang, Ying Wang, Minjie Huang, Jingbo Cui, Tao Song. Effect of Solution and Aging Treatment on Microstructure and Mechanical Properties of Al-14Si-5Cu-1.1Mg-2.3Ni-0.3La Alloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 449-464. |
[11] | Tianyi Zeng, Zirui Luo, Hao Chen, Wei Wang, Ke Yang. Flow Behavior and Dynamic Recrystallization Mechanism of CSS-42L Bearing Steel During Hot Compression Deformation [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 465-480. |
[12] | Wei Qiu, Shuang-Long Li, Zhao-Yuan Lu, Sen-Mao Zhang, Jian Chen, Wei Chen, Lang Gan, Wei Li, Yan-Jie Ren, Jun Luo, Mao-Hai Yao, Wen Xie. Effects of CeO2 Content on the Microstructure and Mechanical Properties of ZK60 Mg Alloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(2): 287-298. |
[13] | Xiaoqing Liu, Xianke Zhang, Jinwei Gao, Xiurong Zhu, Lei Xiao, Zhengchi Yang, Lijun Tan, Chubin Yang, Biao Wu, Huixin Chen, Jiayu Huang. Achieving Ultrahigh Strength in Mg-1.2Y-1.2Ni (at.%) Alloy via Tailoring Extrusion Rate [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(2): 299-312. |
[14] | Dongfang Lou, Mingda Zhang, Yuping Ren, Hongxiao Li, Gaowu Qin. Fabrication of Zn-0.5Mn-0.05 Mg Micro-Tube with Suitable Strength and Ductility for Vascular Stent Application [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(2): 327-337. |
[15] | Chenghao Liu, Wenchao Dong, Jian Sun, Shanping Lu. Effect of Precipitation Behavior and Deformation Twinning Evolution on the Mechanical Properties of 16Cr-25.5Ni-4.2Mo Superaustenitic Stainless Steel Weld Metals [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(2): 338-352. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||