Acta Metallurgica Sinica (English Letters) ›› 2025, Vol. 38 ›› Issue (4): 529-541.DOI: 10.1007/s40195-025-01826-0
Hong Chen1, Ruitao Qu1(), Haotian Ma1, Kexing Song2, Feng Liu1(
)
Received:
2024-10-25
Revised:
2024-12-10
Accepted:
2024-12-16
Online:
2025-04-10
Published:
2025-02-14
Contact:
Ruitao Qu, Hong Chen, Ruitao Qu, Haotian Ma, Kexing Song, Feng Liu. Simultaneously Enhanced Strength and Fracture Resistance in HfNbTaTiZr Refractory High-Entropy Alloy at Higher Strain Rate[J]. Acta Metallurgica Sinica (English Letters), 2025, 38(4): 529-541.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 Microstructural characterizations of the present HfNbTaTiZr alloy: a EBSD-IPF micrograph; b distribution of area-weighted grain size; c X-ray diffraction pattern; d-h X-ray energy-dispersive spectroscopy (EDS) mappings
Fig. 2 Tensile stress-strain curves and properties of the HfNbTaTiZr RHEA at different strain rates: a typical engineering stress-strain curves, b true stress-true strain curves, c strengths as a function of strain rate, d elongations at different strain rates
Fig. 4 True stress-strain curves and work-hardening rate curves of HfNbTaTiZr RHEA at different strain rates: a curves plotted according to the traditional method with the true strain and true strain calculated according to Eqs. (3)-(5); b curves plotted according to Eqs. (6)-(10), which include the Bridgman’s correction for equivalent true stress in the necking region
Fig. 5 a-c Comparisons of engineering stress-strain curves between FE simulation and experiments and d-f stress contours of the axial stress on the longitudinal central sections at different strain rates
Fig. 6 Deformation features of the alloy after tension in different strain rates: a-d 0.001 s−1, e, f 0.1 s−1. a, b SEM images on the side surface of the sample after fracture at the position far away from the fracture surface a and near the fracture surface b. c, e EBSD-IPF map; d, f KAM map. Inset of c shows the distribution of misorientation along the distance along the white arrow in c across several kink bands
Fig. 7 Fracture morphologies of HfNbTaTiZr RHEA after uniaxial tension a-h and SENT i-p. a-d Fracture surfaces of uniaxial tensile samples under different strain rates of a 0.1 s−1, b 0.01 s−1, c 0.001 s−1, d 0.0001 s−1. e-h High magnification images of local positions in a-d, respectively. i-p Fracture surface morphologies of SENT samples at the loading rates of i-l 0.3 mm/s, m-p 0.0003 mm/s
Material | Phase | Strain rate (s−1) | Loading mode | m | References |
---|---|---|---|---|---|
TiZrHfNbTaMo0.25 | BCC | 10-4-10-2 | Compression | 0.0150 | [ |
2100-6000 | Compression | 0.0570 | |||
TiZrHfNbTaMo0.75 | BCC | 10-4-10-2 | Compression | 0.0110 | |
2100-6000 | Compression | 0.0720 | |||
VNbTa | BCC | 10-2-10-3 | Compression | 0.0111 | [ |
2000-5000 | Compression | 0.2990 | |||
Al0.1CrFeCoNi | FCC | 10-3-10-1 | Compression | 0.0158 | [ |
1000-2600 | Compression | 0.1040 | |||
CrMnFeCoNi | FCC | 1200-2700 | Compression | 0.1600 | [ |
Al0.4CrMnFeCoNi | FCC | 10-3-10-1 | Compression | 0.0389 | [ |
250-1300 | Compression | 0.0480 | |||
NiCoFeCrMo4W3 | FCC | 10-4-10-2 | Compression | 0.0166 | [ |
3000-4500 | Compression | 0.2240 | |||
NiCoFeCrW9 | FCC + IM | 10-4-10-2 | Compression | 0.0077 | |
3000-4500 | Compression | 0.2930 | |||
HfNbTaTiZr | BCC | 2100-3450 | Compression | 0.0850 | [ |
HfNbTaTiZr | BCC | 10-4-10-1 | Tension | 0.0173 | This work |
Table 1 Strain rate sensitivity coefficient (m) of various HEAs at room temperature. Here “IM” stands for intermetallic phase
Material | Phase | Strain rate (s−1) | Loading mode | m | References |
---|---|---|---|---|---|
TiZrHfNbTaMo0.25 | BCC | 10-4-10-2 | Compression | 0.0150 | [ |
2100-6000 | Compression | 0.0570 | |||
TiZrHfNbTaMo0.75 | BCC | 10-4-10-2 | Compression | 0.0110 | |
2100-6000 | Compression | 0.0720 | |||
VNbTa | BCC | 10-2-10-3 | Compression | 0.0111 | [ |
2000-5000 | Compression | 0.2990 | |||
Al0.1CrFeCoNi | FCC | 10-3-10-1 | Compression | 0.0158 | [ |
1000-2600 | Compression | 0.1040 | |||
CrMnFeCoNi | FCC | 1200-2700 | Compression | 0.1600 | [ |
Al0.4CrMnFeCoNi | FCC | 10-3-10-1 | Compression | 0.0389 | [ |
250-1300 | Compression | 0.0480 | |||
NiCoFeCrMo4W3 | FCC | 10-4-10-2 | Compression | 0.0166 | [ |
3000-4500 | Compression | 0.2240 | |||
NiCoFeCrW9 | FCC + IM | 10-4-10-2 | Compression | 0.0077 | |
3000-4500 | Compression | 0.2930 | |||
HfNbTaTiZr | BCC | 2100-3450 | Compression | 0.0850 | [ |
HfNbTaTiZr | BCC | 10-4-10-1 | Tension | 0.0173 | This work |
Fig. 8 Yield strength as a function of strain rate for various HEAs at room temperature. The values of SRS coefficient (m) were added near the data points, which were plotted based on the data in Table 1
Fig. 9 Size of the largest dimple measured on the fracture surfaces of uniaxial tension samples as a function of loading time. The size was determined based on the equivalent diameter of the largest dimple on the fracture surface
[1] | J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6, 299 (2004) |
[2] | Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, Y. Yang, Mater. Today 19, 349 (2016) |
[3] | X. Huang, R. Qu, F. Ren, C. Guo, Y. Xing, H. Ma, Y. Lin, J. Liu, K. Song, F. Liu, J. Mater. Res. Technol. 31, 506 (2024) |
[4] | Y. Zhou, S. Peng, Y. Guo, X. Wu, C. Liu, Z. Li, Acta Metall. Sin.-Engl. Lett. 37, 1186 (2024) |
[5] | H. Yan, Y.A. Zhang, W. Xiao, B. Xue, R. Liu, X. Li, Z. Li, B. Xiong, Acta Metall. Sin.-Engl. Lett. 37, 1480 (2024) |
[6] | S.Y. Peng, Y.Z. Tian, Z.Y. Ni, S. Lu, S. Li, Int. J. Plast. 182, 104129 (2024) |
[7] | R. Qu, S. Wu, C.A. Volkert, Z. Zhang, F. Liu, Mater. Sci. Eng. A 867, 144729 (2023) |
[8] | X. Liu, K. Song, Z. Kou, J. Gong, X. Chen, Q. Gao, H. Sun, P. Liu, R. Qu, L. Hu, Z. Zhang, P. Ramasamy, Z. Liu, Z. Zhang, F. Liu, Z. Zhang, J. Eckert, Int. J. Plast. 177, 103992 (2024) |
[9] | B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science 345, 1153 (2014) |
[10] | X. Fan, R. Qu, Z. Zhang, Acta Metall. Sin.-Engl. Lett. 34, 1461 (2021) |
[11] | O.N. Senkov, G.B. Wilks, J.M. Scott, D.B. Miracle, Intermetallics 19, 698 (2011) |
[12] | C. Rong, J. Yang, X. Zhao, K. Huang, Y. Liu, X. Wang, D. Zhu, R. Chen, Acta Metall. Sin.-Engl. Lett. 37, 633 (2024) |
[13] | O.N. Senkov, J.M. Scott, S.V. Senkova, F. Meisenkothen, D.B. Miracle, C.F. Woodward, J. Mater. Sci. 47, 4062 (2012) |
[14] | O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miracle, C.F. Woodward, J. Alloys Compd. 509, 6043 (2011) |
[15] | X.J. Fan, R.T. Qu, Z.F. Zhang, J. Mater. Sci. Technol. 123, 70 (2022) |
[16] | Z.C. Meng, K.G. Wang, T. Ali, D. Li, C.G. Bai, D.S. Xu, S.J. Li, A.H. Feng, G.J. Cao, J.H. Yao, Q.B. Fan, H. Wang, R. Yang, Acta Metall. Sin.-Engl. Lett. 37, 1590 (2024) |
[17] | L. Liu, Z. Zhou, J. Yu, X. Wang, C. Cui, R. Zhang, Y. Zhou, X. Sun, Acta Metall. Sin.-Engl. Lett. 37, 1453 (2024) |
[18] | H.Z. Jiang, Z.Y. Li, T. Feng, P.Y. Wu, Q.S. Chen, S.K. Yao, J.Y. Hou, Acta Metall. Sin.-Engl. Lett. 35, 773 (2022) |
[19] | S. Chen, W. Li, F. Meng, Y. Tong, H. Zhang, K.K. Tseng, J.W. Yeh, Y. Ren, F. Xu, Z. Wu, P.K. Liaw, Scr. Mater. 200, 113919 (2021) |
[20] | R.R. Eleti, T. Bhattacharjee, A. Shibata, N. Tsuji, Acta Mater. 171, 132 (2019) |
[21] | M.L. Hu, W.D. Song, D.B. Duan, Y. Wu, Int. J. Mech. Sci. 182, 105738 (2020) |
[22] | L.H. Mills, M.G. Emigh, C.H. Frey, N.R. Philips, S.P. Murray, J. Shin, D.S. Gianola, T.M. Pollock, Acta Mater. 245, 118618 (2023) |
[23] | R.Q. Liang, A.S. Khan, Int. J. Plast. 15, 963 (1999) |
[24] | W. Chen, Z. Liu, J. Ketkaew, R.M.O. Mota, S.H. Kim, M. Power, W. Samela, J. Schroers, Acta Mater. 107, 220 (2016) |
[25] | Z. Zhang, Z. Qu, L. Xu, R. Liu, P. Zhang, Z. Zhang, T.G. Langdon, Acta Mater. 231, 117877 (2022) |
[26] | J.M. Choung, S.R. Cho, J. Mater. Sci. Technol. 22, 1039 (2008) |
[27] | Z.L. Zhang, M. Hauge, J. Odegård, C. Thaulow, Int. J. Solids Struct. 36, 3497 (1999) |
[28] | N.E. Dowling, Mater. Today 8, 83 (2005) |
[29] | A. Weck, D.S. Wilkinson, E. Maire, H. Toda, Acta Mater. 56, 2919 (2008) |
[30] | G. Yang, Z. Han, J. Yang, Y. Tian, A. Tian, J. Zhang, G. Liu, R. Wei, G. Zhang, Mater. Charact. 213, 114036 (2024) |
[31] | S.J. Wu, R.T. Qu, Z.C. Liu, H.F. Li, X.D. Wang, C.W. Tan, P. Zhang, Z.F. Zhang, Int. J. Impact Eng. 152, 103856 (2021) |
[32] | Y.L. Bai, Adiabatic Shear Localization: Frontiers and Advances, 2nd edn. (Elsevier Science, Burlington, 2012), p.468 |
[33] | D. Odoh, G. Owolabi, A. Odeshi, H. Whitworth, Acta Metall. Sin.-Engl. Lett. 26, 378 (2013) |
[34] | I. Dowding, C.A. Schuh, Nature 630, 91 (2024) |
[35] | H. Couque, Philos. Trans. R. Soc. A 372, 20130218 (2014) |
[36] | G. Dirras, H. Couque, L. Lilensten, A. Heczel, D. Tingaud, J.P. Couzinie, L. Perriere, J. Gubicza, I. Guillot, Mater. Charact. 111, 106 (2016) |
[37] | S. Zhang, Z. Wang, H.J. Yang, J.W. Qiao, Z.H. Wang, Y.C. Wu, Intermetallics 121, 106699 (2020) |
[38] | N. Kumar, Q. Ying, X. Nie, R.S. Mishra, Z. Tang, P.K. Liaw, R.E. Brennan, K.J. Doherty, K.C. Cho, Mater. Des. 86, 598 (2015) |
[39] | B. Wang, A. Fu, X. Huang, B. Liu, Y. Liu, Z. Li, X. Zan, J. Mater. Eng. Perform. 25, 2985 (2016) |
[40] | C.M. Cao, W. Tong, S.H. Bukhari, J. Xu, Y.X. Hao, P. Gu, H. Hao, L.M. Peng, Mater. Sci. Eng. A 759, 648 (2019) |
[41] | X. Liu, Y. Wu, Y. Wang, J. Chen, R. Bai, L. Gao, Z. Xu, W.Y. Wang, C. Tan, X. Hui, J. Mater. Sci. Technol. 127, 164 (2022) |
[42] | W.S. Lee, J.I. Cheng, C.F. Lin, Mater. Sci. Eng. A 381, 206 (2004) |
[43] | J.Z. Lu, J.S. Zhong, K.Y. Luo, L. Zhang, H. Qi, M. Luo, X.J. Xu, J.Z. Zhou, Surf. Coat. Technol. 221, 88 (2013) |
[44] | R.A. Al-Hammadi, R. Zhang, C. Cui, Z. Zhou, Y. Zhou, Acta Metall. Sin.-Engl. Lett. 37, 915 (2024) |
[45] | M. Yang, X. Dong, Acta Metall. Sin.-Engl. Lett. 22, 40 (2009) |
[46] | M.W. Vaughan, H. Lim, B. Pham, R. Seede, A.T. Polonsky, K.L. Johnson, P.J. Noell, Acta Mater. 274, 119977 (2024) |
[47] |
R.B. Sills, B.L. Boyce, Mater. Res. Lett. 8, 103 (2020)
DOI |
[48] | H. Wang, Q. He, X. Gao, Y. Shang, W. Zhu, W. Zhao, Z. Chen, H. Gong, Y. Yang, Adv. Mater. 36, 2305453 (2024) |
[49] | Y. Cui, Y. Toku, Y. Kimura, Y. Ju, Y. Cui, Y. Toku, Y. Kimura, Y. Ju, Scr. Mater. 185, 12 (2020) |
[50] | F. Liu, J. Mater. Sci. Technol. 155, 72 (2023) |
[1] | Zirui Chen, Liyuan Wang, Jiayu Zhao, Guanhua Cui, Zhuo Gao, Zhiyuan Fan, Xiaohui Shi, Junwei Qiao. Microstructure and Mechanical Properties of the Ti62Nb12Mo12Ta12W2 Refractory High Entropy Alloy Prepared through Spark Plasma Sintering [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(8): 1387-1398. |
[2] | Chenglu Zou, Yan Zhao, Gang Zhu, Jianchao Pang, Shaogang Wang, Yangzhen Liu, Feng Liu, Shouxin Li, Zhefeng Zhang. Investigation of Material Properties Based on 3D Graphite Morphology for Compacted Graphite Iron [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(6): 1077-1086. |
[3] | Xuan-Hong Cai, Zhen-Hua Wang, Ben Niu, Jin-Feng Li, Qing Wang, Show authors. Microstructural Evolutions and Mechanical Properties of Energetic Al1 (TiZrNbTaMoCr)15 High-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(4): 620-632. |
[4] | Xue Yin, Yan-Kun Dou, Xin-Fu He, Ke Jin, Cheng-Long Wang, Ya-Guang Dong, Cun-Yong Wang, Yun-Fei Xue, Wen Yang. Effects of Nb Addition on Charpy Impact Properties of TiVTa Refractory High-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(3): 405-416. |
[5] | Minjie Wang, Jianghua Shen, Biao Chen, Umeda Junko, Katsuyoshi Kondoh, Yulong Li. Effect of CNTs on Activation Volume and Mobile Dislocation Exhaustion Rate of CNTs/Al under Compression Loading [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(1): 127-132. |
[6] | Wen-Ke Yang, Zhu-Man Song, Xue-Mei Luo, Guang-Ping Zhang. Evaluation of Tensile and Fatigue Properties of Metals Using Small Specimens [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(1): 147-157. |
[7] | Xing-Jiang Hua, Ping Hu, Hai-Rui Xing, Jia-Yu Han, Song-Wei Ge, Shi-Lei Li, Chao-Jun He, Kuai-She Wang, Chun-Juan Cui. Development and Property Tuning of Refractory High-Entropy Alloys: A Review [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1231-1265. |
[8] | Shucheng Shen, Cuilan Wu, Pan Xie, Yuanrui Liu. Positive Strain Rate Sensitivity and Deformation Behavior of a Fe-29Mn-3Al-3Si TWIP Steel [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(11): 1825-1836. |
[9] | Shaofan Ge, Shifeng Lin, Huameng Fu, Long Zhang, Tieqiang Geng, Zhengwang Zhu, Zhengkun Li, Hong Li, Aimin Wang, Hongwei Zhang, Haifeng Zhang. High-temperature Mechanical Properties and Dynamic Recrystallization Mechanism of in situ Silicide-reinforced MoNbTaTiVSi Refractory High-entropy Alloy Composite [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(10): 1617-1630. |
[10] | Bing Li, Ji Wu, Bugang Teng. Influences of the Texture Characteristic and Interdendritic LPSO Phase Distribution on the Tensile Properties of Mg-Gd-Y-Zn-Zr Sheets Through Hot Rolling [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(8): 1051-1064. |
[11] | Xiusong Huang, Lehua Liu, Weibing Liao, Jianjun Huang, Huibin Sun, Chunyan Yu. Characterization of Nucleation Behavior in Temperature-Induced BCC-to-HCP Phase Transformation for High Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(11): 1546-1556. |
[12] | Fu-Yue Wang, Xiang-Jie Wang, Wei Sun, Fang Yu, Jian-Zhong Cui. Low Frequency Electromagnetic Casting of 2195 Aluminum-Lithium Alloy and Its Effects on Microstructure and Mechanical Properties [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(3): 338-350. |
[13] | Yang Bai, Wei-Li Cheng, Shi-Chao Ma, Jun Zhang, Chen Guo, Yao Zhang. Influence of Initial Microstructure on the Strengthening Effect of Extruded Mg-8Sn-4Zn-2Al Alloys [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(5): 487-495. |
[14] | Jin-Long Fu, Hong-Jun Jiang, Kai-Kun Wang. Influence of Processing Parameters on Microstructural Evolution and Tensile Properties for 7075 Al Alloy Prepared by an ECAP-Based SIMA Process [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(4): 337-350. |
[15] | Jian Peng, Jian Peng, Kai-Shang Li, Jun-Feng Pei, Chang-Yu Zhou. Temperature-Dependent SRS Behavior of 316L and Its Constitutive Model [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(3): 234-244. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||