Acta Metallurgica Sinica (English Letters) ›› 2025, Vol. 38 ›› Issue (4): 542-554.DOI: 10.1007/s40195-025-01825-1
Previous Articles Next Articles
Yaoxiang Geng1(), Keying Lv1, Chunfeng Zai1, Zhijie Zhang1, Anil Kunwar2
Received:
2024-10-28
Revised:
2024-11-28
Accepted:
2024-12-04
Online:
2025-04-10
Published:
2025-02-18
Contact:
Yaoxiang Geng, Yaoxiang Geng, Keying Lv, Chunfeng Zai, Zhijie Zhang, Anil Kunwar. A High-Strength TiB2-Modified Al-Si-Mg-Zr Alloy Fabricated by Laser Powder-Bed Fusion[J]. Acta Metallurgica Sinica (English Letters), 2025, 38(4): 542-554.
Add to citation manager EndNote|Ris|BibTeX
Powder | Chemical composition | ||||
---|---|---|---|---|---|
Si | Mg | Zr | Fe | Al | |
Al-Si-Mg-Zr | 7.43 | 1.57 | 0.37 | 0.08 | Bal. |
Table 1 Chemical composition of the Al-Si-Mg-Zr powder (wt%)
Powder | Chemical composition | ||||
---|---|---|---|---|---|
Si | Mg | Zr | Fe | Al | |
Al-Si-Mg-Zr | 7.43 | 1.57 | 0.37 | 0.08 | Bal. |
Laser power (W) | Laser beam diameter (μm) | Powder layer thickness (μm) | Hatch spacing (μm) | Laser scanning speed (mm/s) | Angle of rotation (°) |
---|---|---|---|---|---|
250, 350 | 100 | 30 | 100 | 800, 900, 1000, 1100, 1200 | 67 |
Table 2 LPBF process parameters of the specimens
Laser power (W) | Laser beam diameter (μm) | Powder layer thickness (μm) | Hatch spacing (μm) | Laser scanning speed (mm/s) | Angle of rotation (°) |
---|---|---|---|---|---|
250, 350 | 100 | 30 | 100 | 800, 900, 1000, 1100, 1200 | 67 |
Fig. 5 a, b EBSD orientation maps obtained from a parallel and b perpendicular to the building directions, and c low, d high magnification (originated from the fine region) SEM images of the LPBF TiB2/Al-Si-Mg-Zr samples obtained from parallel to the building direction
Fig. 8 a, b High-resolution TEM images, and c inverse FFT obtained from the FFT of the inset in b. FFT image originated from a indicated the presence of βʺ phase. Inverse FFT analysis revealed that the 9R structure consists of three Shockley partials. When viewed along the [110] direction, the stacking sequence of the 9R phase is observed to follow the …ABC/BCA/CAB/…
Fig. 11 Variations of Vickers hardness of the LPBF TiB2/Al-Si-Mg-Zr samples after aging a at different temperatures for 2 h, b at 150 °C for different time
Fig. 12 a Tensile stress-strain curves, and comparison of the b YS, c UTS of the LPBF TiB2/Al-Si-Mg-Zr samples with other previously reported external addition TiB2-modified aluminum alloys fabricated using LPBF
Samples | Condition | YS (MPa) | UTS (MPa) | Elongation (%) |
---|---|---|---|---|
TiB2/Al-Si-Mg-Zr | As-built | 408 ± 9 | 514 ± 8 | 4.7 ± 1.2 |
150 °C-12 h | 406 ± 10 | 518 ± 6 | 4.8 ± 1.1 | |
150 °C-24 h | 403 ± 11 | 520 ± 12 | 4.7 ± 1.1 | |
150 °C-48 h | 419 ± 3 | 517 ± 10 | 4.4 ± 1.2 | |
250 °C-2 h | 221 ± 10 | 345 ± 7 | 8.3 ± 0.7 | |
300 °C-2 h | 182 ± 1 | 279 ± 1 | 13.5 ± 4 | |
Al-Si-Mg-Zr | As-built | 343 ± 3 | 485 ± 4 | 10.2 ± 0.2 |
300 °C-2 h | 198 ± 1 | 305 ± 6 | 28.3 ± 3.3 |
Table 3 Mechanical properties of as-built and aging LPBF TiB2/Al-Si-Mg-Zr and Al-Si-Mg-Zr samples
Samples | Condition | YS (MPa) | UTS (MPa) | Elongation (%) |
---|---|---|---|---|
TiB2/Al-Si-Mg-Zr | As-built | 408 ± 9 | 514 ± 8 | 4.7 ± 1.2 |
150 °C-12 h | 406 ± 10 | 518 ± 6 | 4.8 ± 1.1 | |
150 °C-24 h | 403 ± 11 | 520 ± 12 | 4.7 ± 1.1 | |
150 °C-48 h | 419 ± 3 | 517 ± 10 | 4.4 ± 1.2 | |
250 °C-2 h | 221 ± 10 | 345 ± 7 | 8.3 ± 0.7 | |
300 °C-2 h | 182 ± 1 | 279 ± 1 | 13.5 ± 4 | |
Al-Si-Mg-Zr | As-built | 343 ± 3 | 485 ± 4 | 10.2 ± 0.2 |
300 °C-2 h | 198 ± 1 | 305 ± 6 | 28.3 ± 3.3 |
Fig. 13 SEM low- and high-magnification fracture morphology images of the LPBF TiB2/Al-Si-Mg-Zr samples at different heat treatment conditions, a1, a2 as-built, b1, b2 150 °C-24 h, c1, c2 300 °C-2 h
[1] | N.T. Aboulkhair, M. Simonelli, L. Parry, I. Ashcroft, C. Tuck, R. Hague, Prog. Mater. Sci. 106, 100578 (2019). |
[2] | Y.X. Geng, H. Tang, J.H. Xu, Y.X. Wang, Z. He, Z.J. Zhang, H.B. Ju, L.H. Yu, Int. J. Min. Metall. Mater. 29, 1770 (2022). |
[3] | Y. Lai, Y. Deng, X.W. Zhu, Y.F. Guo, G.F. Xu, J.W. Huang, Z.M. Yin, Trans. Nonferrous Met. Soc. China 33, 357 (2023). |
[4] |
A. Du Plessis, C. Broeckhoven, I. Yadroitsava, I. Yadroitsev, C.H. Hands, R. Kunju, D. Bhate, Addit. Manuf. 27, 408 (2019).
DOI |
[5] | J. Yu, Y.X. Geng, Y.K. Chen, X. Wang, Z.J. Zhang, H. Tang, J.H. Xu, H.B. Ju, D.P. Wang, Int. J. Min. Metall. Mater. 31, 2221 (2024). |
[6] | J. Yu, Y.X. Geng, H.B. Ju, Z.J. Zhang, J.H. Xu, Trans. Nonferrous Met. Soc. China 34, 2431 (2024). |
[7] | L. Zhao, L.B. Song, J.G.S. Macías, Y.X. Zhu, M.S. Huang, A. Simar, Z.H. Li, Addit. Manuf. 56, 102914 (2022). |
[8] | X.P. Li, G. Ji, Z. Chen, A. Addad, Y. Wu, H.W. Wang, J. Vleugels, J. Van Humbeeck, J.P. Kruth, Acta Mater. 129, 183 (2017). |
[9] | Z. Feng, H. Tan, Y.B. Fang, X. Lin, W.D. Huang, J. Mater. Process. Technol. 299, 117386 (2022). |
[10] | L.X. Xi, D.D. Gu, S. Guo, R.Q. Wang, K. Ding, K.G. Prashanth, J. Mater. Res. Technol. 9, 2611 (2020). |
[11] | Z.G. Zhu, Z.H. Hu, H. Li Seet, T.T. Liu, W.H. Liao, U. Ramamurty, S.M.L. Nai, Int. J. Mach. Tool Manuf. 190, 104047 (2023). |
[12] |
W.H. Yu, S.L. Sing, C.K. Chua, C.N. Kuo, X.L. Tian, Prog. Mater. Sci. 104, 330 (2019).
DOI |
[13] | Y.X. Geng, Q. Wang, Y.M. Wang, Q.H. Zang, S.B. Mi, J.H. Xu, Y.K. Xiao, Y. Wu, J.H. Luan, Mater. Des. 218, 110674 (2022). |
[14] | Y.X. Geng, Y.M. Wang, J.H. Xu, S.B. Mi, S.M. Fan, Y.K. Xiao, Y. Wu, J.H. Luan, J. Alloys Compd. 867, 159103 (2021). |
[15] | Y.X. Geng, C.F. Zai, J. Yu, H. Tang, H.W. Lv, Z.J. Zhang, Trans. Nonferrous Met. Soc. China 34, 2733 (2024). |
[16] | J.F. Qi, C.Y. Liu, Z.W. Chen, Z.Y. Liu, J.S. Tian, J. Feng, I.V. Okulov, J. Eckert, P. Wang, Mater. Sci. Eng. A 855, 143833 (2022). |
[17] | J. Ciurana, L. Hernandez, J. Delgado, Int. J. Adv. Manuf. Technol. 68, 1103 (2013). |
[18] | J.R. Guan, Q.P. Wang, Materials 16, 2757 (2023). |
[19] | M. Simonelli, C. Tuck, N.T. Aboulkhair, I. Maskery, I. Ashcroft, R.D. Wildman, R. Hague, Metall. Mater. Trans. A 46, 3842 (2015). |
[20] | Y.L. Li, D.D. Gu, Mater. Des. 63, 856 (2014). |
[21] | I. Maskery, N.T. Aboulkhair, M.R. Corfield, C. Tuck, A.T. Clare, R.K. Leach, R.D. Wildman, I.A. Ashcroft, Mater. Charact. 111, 193 (2016). |
[22] | N.T. Aboulkhair, N.M. Everitt, I. Ashcroft, C. Tuck, Addit. Manuf. 1-4, 77 (2014). |
[23] | H.L. Huang, W. Li, C.B. Hu, L.P. Ding, Z.H. Jia, N. Zhou, Mater. Sci. Eng. A 836, 142570 (2022). |
[24] |
L. Zhou, H. Hyer, S. Park, H. Pan, Y.L. Bai, K.P. Rice, Y. Sohn, Addit. Manuf. 28, 485 (2019).
DOI |
[25] | H. Tang, Y.X. Geng, S.N. Bian, J.H. Xu, Z.J. Zhang, Acta Metall. Sin.-Engl. Lett. 35, 466 (2022). |
[26] | S.Y. Ahn, J. Moon, Y.T. Choi, E.S. Kim, S.G. Jeong, J.M. Park, M. Kang, H. Joo, H.S. Kim, Mater. Sci. Eng. A 844, 143164 (2022). |
[27] | J. Wan, K.A. Li, H.R. Geng, B. Chen, J.H. Shen, Y.Z. Guo, K. Kondoh, A. Bahador, J.S. Li, Mater. Res. Lett. 11, 422 (2023). |
[28] | N. Tabatabaei, A. Zarei-Hanzaki, A. Moshiri, H.R. Abedi, J. Mater. Res. Technol. 23, 6039 (2023). |
[29] | W. Cheng, Y.Z. Liu, X.J. Xiao, B. Huang, Z.G. Zhou, X.H. Liu, Mater. Sci. Eng. A 834, 142435 (2022). |
[30] | S.H. Wang, Y. Wang, Y.J. Zhang, F. Wang, T. Hashimoto, X.R. Zhou, Z.Y. Fan, Q. Ramasse, Scr. Mater. 253, 116310 (2024). |
[31] | Y.J. Ren, B. Han, H. Wu, J.C. Wang, B. Liu, B.Q. Wei, Z.B. Jiao, I. Baker, Scr. Mater. 224, 115115 (2023). |
[32] | T.C. Schulthess, P.E.A. Turchi, A. Gonis, Acta Mater. 46, 2215 (1998). |
[33] |
N.A. Richter, Y.F. Zhang, D.Y. Xie, R. Su, Q. Li, S. Xue, T. Niu, J. Wang, H. Wang, X. Zhang, Mater. Res. Lett. 9, 91 (2021).
DOI |
[34] | Y.X. Geng, X. Wang, Y.K. Chen, Z.F. Shan, Z.J. Zhang, A. Kunwar, Virtual Phys. Prototyp. 19, 2416518 (2024). |
[35] | Q. Li, S.C. Xue, J. Wang, S. Shao, A.H. Kwong, A. Giwa, Z. Fan, Y. Liu, Z.M. Qi, J. Ding, H. Wang, J.R. Greer, H.Y. Wang, X.H. Zhang, Adv. Mater. 30, 1704629 (2018). |
[36] | J.F. Zhang, D.S. Zhou, X.Y. Pang, B.W. Zhang, Y. Li, B.H. Sun, R.Z. Valiev, D.L. Zhang, Acta Mater. 244, 118540 (2023). |
[37] | F.C. An, J.H. Hou, B.N. Qian, C.H. Liebscher, W.J. Lu, Mater. Charact. 202, 112993 (2023). |
[38] | K.V. Yang, P. Rometsch, C.H.J. Davies, A. Huang, X. Wu, Mater. Des. 154, 275 (2018). |
[39] | T. Kimura, T. Nakamoto, Mater. Des. 89, 1294 (2016). |
[40] | Y.N. Meng, Z.Y. Yu, P. Rong, G.J. Li, J. Laser Appl. 32, 022007 (2020). |
[41] | L.X. Xi, D.D. Gu, K.J. Lin, S. Guo, Y. Liu, Y.X. Li, M. Guo, J. Mater. Res. 35, 559 (2020). |
[42] | Y.X. Li, D.D. Gu, H. Zhang, L.X. Xi, Chin. J. Mech. Eng. 33, 33 (2020). |
[43] | R.Q. Wang, L.X. Xi, K. Ding, B. Gökce, S. Barcikowski, D.D. Gu, Adv. Powder Technol. 33, 103687 (2022). |
[44] | Q.Z. Wang, X. Lin, N. Kang, X.L. Wen, Y. Cao, J.L. Lu, D.J. Peng, J. Bai, Y.X. Zhou, M. El Mansori, W.D. Huang, Mater. Sci. Eng. A 840, 142950 (2022). |
[45] | C. Gao, Z. Liu, Z. Xiao, W. Zhang, K. Wong, A.H. Akbarzadeh, J. Alloys Compd. 853, 156722 (2021). |
[46] | Y.J. Shi, K. Yang, S.K. Kairy, F. Palm, X.H. Wu, P.A. Rometsch, Mater. Sci. Eng. A 732, 41 (2018). |
[47] | R. Xu, R.D. Li, T.C. Yuan, H.B. Zhu, M.B. Wang, J.F. Li, W. Zhang, P. Cao, Mater. Sci. Eng. A 859, 144181 (2022). |
[48] | Q. Wang, Z. Li, S.J. Pang, X.N. Li, C. Dong, P.K. Liao, Entropy 20, 878 (2018). |
[49] | R.D. Li, M.B. Wang, Z.M. Li, P. Cao, T.C. Yuan, H.B. Zhu, Acta Mater. 193, 83 (2020). |
[50] |
D. Bufford, Y. Liu, J. Wang, H. Wang, X. Zhang, Nat. Commun. 5, 4864 (2014).
DOI PMID |
[51] | D.K. Kim, W. Woo, J.H. Hwang, K.E. An, S.H. Choi, J. Alloys Compd. 686, 281 (2016). |
[52] | L. Zhao, J.G.S. Macías, L. Ding, H. Idrissi, A. Simar, Mater. Sci. Eng. A 764, 138210 (2019). |
[1] | Haijian Liu, Tianle Li, Xifeng Li, Huiping Wu, Zhiqiang Wang, Jun Chen. Strength Optimization of Diffusion-Bonded Ti2AlNb Alloy by Post-Heat Treatment [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(4): 614-626. |
[2] | X. W. Shang, Z. G. Lu, R. P. Guo, L. Xu. Influence of Hot Isostatic Pressing Temperature on Microstructure and Mechanical Properties of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si Alloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(4): 627-641. |
[3] | Jing Wang, Xuejian Wang, Zongning Chen, Huijun Kang, Tongmin Wang, Enyu Guo. In Vitro Corrosion Behavior and Mechanical Property of Novel Mg-Sn-In-Ga Alloys for Orthopedic Applications [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 353-366. |
[4] | Xiaotong Lu, Pingyun Yuan, Zhengquan Wang, Xiaocheng Li, Hanyuan Liu, Wenhao Zhou, Kun Sun, Yongliang Mu. Mechanical Properties and Corrosion Behavior of Porous Zn Alloy as Biodegradable Materials [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 367-382. |
[5] | Nafiseh Mollaei, Seyed Mahmood Fatemi, Mohammad Reza Aboutalebi, Seyed Hossein Razavi, Wiktor Bednarczyk. Microstructure, Texture, Mechanical Properties, and Corrosion Behavior of Biodegradable Zn-0.2Mg Alloy Processed by Multi-Directional Forging [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 507-525. |
[6] | Jian Dong, Jufu Jiang, Ying Wang, Minjie Huang, Jingbo Cui, Tao Song. Effect of Solution and Aging Treatment on Microstructure and Mechanical Properties of Al-14Si-5Cu-1.1Mg-2.3Ni-0.3La Alloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 449-464. |
[7] | Chenghao Liu, Wenchao Dong, Jian Sun, Shanping Lu. Effect of Precipitation Behavior and Deformation Twinning Evolution on the Mechanical Properties of 16Cr-25.5Ni-4.2Mo Superaustenitic Stainless Steel Weld Metals [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(2): 338-352. |
[8] | Sai Chen, Shuangjie Chu, Bo Mao. Iron-Based Metal Matrix Composite: A Critical Review on the Microstructural Design, Fabrication Processes, and Mechanical Properties [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(1): 1-44. |
[9] | Zheng Liu, De-Chun Ren, Lian-Min Zhang, Ai-Li Ma, Hai-Bin Ji, Yu-Gui Zheng. Synergistic Improvement in Ductility and Hot Nitric Acid Corrosion Resistance of LPBF Ti-6Al-4V Alloy via Hot Isostatic Pressing [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(1): 102-106. |
[10] | Qishan Sun, Shitong Wei, Shanping Lu. Coupling Effect Mechanism of the δ-Ferrite and M23C6 on the Mechanical Properties of 9Cr-Steel Deposited Metals [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(1): 121-138. |
[11] | Ye Liu, Shuran Chu, Hui Guo, Mengyao Kong, Chenxi Liu, Jingwen Zhang, Ran Ding, Yongchang Liu. Enhancing the Strength of Medium Mn Steel by Flash Treatment [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(1): 139-150. |
[12] | Hongwei Yan, Yong’an Zhang, Wei Xiao, Boyu Xue, Rui Liu, Xiwu Li, Zhihui Li, Baiqing Xiong. Experimental and DFT Investigations of AlNbTiVZr High Entropy Alloys with Excellent Mechanical Properties [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(9): 1480-1490. |
[13] | Zirui Chen, Liyuan Wang, Jiayu Zhao, Guanhua Cui, Zhuo Gao, Zhiyuan Fan, Xiaohui Shi, Junwei Qiao. Microstructure and Mechanical Properties of the Ti62Nb12Mo12Ta12W2 Refractory High Entropy Alloy Prepared through Spark Plasma Sintering [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(8): 1387-1398. |
[14] | Shasha Qu, Yingju Li, Bingyu Lu, Cuiping Wang, Yuansheng Yang. Effects of Boron Addition on the Microstructure and Mechanical Properties of γ′-Strengthened Directionally Solidified CoNi-Base Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(8): 1438-1452. |
[15] | Guan-Cheng Gu, Zhao-Jing Han, Ze-Yu Chen, Zhao-Xuan Li, Sheng-Bao Xia, Zheng-Ning Li, Hua Jin, Wei-Wei Xu, Xing-Jun Liu. Theoretical Exploration of Alloying Effects on Stabilities and Mechanical Properties of γʹ Phase in Novel Co-Al-Nb-Base Superalloys [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(7): 1238-1248. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||