Acta Metallurgica Sinica (English Letters) ›› 2022, Vol. 35 ›› Issue (11): 1825-1836.DOI: 10.1007/s40195-022-01416-4
Previous Articles Next Articles
Shucheng Shen, Cuilan Wu(), Pan Xie(
), Yuanrui Liu
Received:
2021-12-21
Revised:
2022-02-01
Accepted:
2022-02-27
Online:
2022-11-10
Published:
2022-05-19
Contact:
Cuilan Wu, cuilanwu@hnu.edu.cn; Pan Xie, xppanda@126.com
Shucheng Shen, Cuilan Wu, Pan Xie, Yuanrui Liu. Positive Strain Rate Sensitivity and Deformation Behavior of a Fe-29Mn-3Al-3Si TWIP Steel[J]. Acta Metallurgica Sinica (English Letters), 2022, 35(11): 1825-1836.
Add to citation manager EndNote|Ris|BibTeX
Fig. 2 a True stress-strain curves of samples during quasi-static compression at different strain rates, the superelasticity in a caused by not using an extensometer during the experiment. b True stress-strain curves of samples during dynamic impact deformation at different strain rates. c Logarithm of yielding strength as a function of the logarithm of strain rates (? are 0.029 and 0.190 for under quasi-static compression and dynamic impact, respectively)
Strain rate (s-1) | Yielding strength (MPa) | |
---|---|---|
Quasi-static compression | 8.3 × 10-4 | 242 |
8.3 × 10-3 | 251 | |
8.3 × 10-2 | 253 | |
8.3 × 10-1 | 289 | |
High-speed impact | 2300 | 450 |
3500 | 490 | |
3800 | 560 |
Table 1 Yielding strength of samples at different strain rates
Strain rate (s-1) | Yielding strength (MPa) | |
---|---|---|
Quasi-static compression | 8.3 × 10-4 | 242 |
8.3 × 10-3 | 251 | |
8.3 × 10-2 | 253 | |
8.3 × 10-1 | 289 | |
High-speed impact | 2300 | 450 |
3500 | 490 | |
3800 | 560 |
Fig. 4 SEM morphologies of the samples after dynamic impacting at different strain rates a, b 650 s-1; c, d 2300 s-1; e, f 3500 s-1; g, h 3800 s-1 (these grains with lath-like structure are surrounded by the yellow dashed lines, and the broad planes of laths are marked by the green lines)
Fig. 6 EBSD analysis of the dynamic deformed sample at a strain rate of 3500 s-1; a IPF mapping; b enlargement of the triple twins formed area in a; c misorientation along the lines ‘‘1-2’’ of b, showing a large number of small-angle grain boundaries; d {111} pole figure of white framed area in b; e-g {111} pole figure of the corresponding areas in a
Fig. 7 a EBSD IPF mapping of dynamic deformed sample at a strain rate of 3800 s-1; b image quality (IQ) contrast of the same region (the inset is {111} pole figure of white rectangle); c misorientation along the yellow lines “1-2” in b, showing the large-angle grain boundary; d misorientation along the blue lines “3-4” in b, showing small-angle grain boundary
Fig. 8 TEM images of sample deformed at a strain rate of 3800 s-1. a Low magnification of TEM morphology contains the primary and secondary twins; b SAEDP corresponding to the position of circle in a; c TEM image and corresponding SAEDP of twins on other two {111} twinning planes unparalleled beam direction; d TEM image shows two primary twins with different contrasts; e TEM dark-field image of d; f SAEDP of d showing approximately 5.75° misorientation; g high-resolution TEM image of twins with different contrasts; h high-resolution TEM image of the interaction between SF and twin; i schematic observing directions in TEM
Fig. 9 a XRD patterns of samples deformed at different strain rates; b the (200) diffraction peak fitting by experiment curves for samples deformed at strain rates of 8.3 × 10-4 s-1 and 3800 s-1, respectively; c modified Williamson-Hall plots for samples deformed at different strain rates; d dislocation density determined from the modified Williamson-Hall plots
Elastic modulus (G, GPa) | Burgers vector of partial dislocation (bp, nm) | Length of the twinning source (L0, nm) | Stacking fault energy(γisf, mJ/m2) | Critical twinning stress (τT, MPa) |
---|---|---|---|---|
65 | 0.147 | 200 | 40 | 183.9 (from Eq. (4)) |
Table 2 Critical parameters for the occurrence of deformation twinning
Elastic modulus (G, GPa) | Burgers vector of partial dislocation (bp, nm) | Length of the twinning source (L0, nm) | Stacking fault energy(γisf, mJ/m2) | Critical twinning stress (τT, MPa) |
---|---|---|---|---|
65 | 0.147 | 200 | 40 | 183.9 (from Eq. (4)) |
Twinning system | m = cosλcosφ | τ | |||
---|---|---|---|---|---|
8.3 × 10-1 s-1 | 2300 s-1 | 3500 s-1 | 3800 s-1 | ||
| 0.3989 | 115.3 | 179.5 | 195.5 | 223.4 |
| 0.2538 | 73.3 | 114.2 | 124.4 | 142.1 |
| 0.1450 | 41.9 | 65.3 | 71.1 | 81.2 |
| 0.4895 | 141.5 | 220.3 | 239.9 | 274.1 |
| 0.1632 | 47.2 | 73.4 | 80.0 | 91.4 |
| 0.3263 | 94.3 | 146.8 | 159.9 | 182.7 |
| 0.1632 | 47.1 | 73.4 | 80.0 | 91.4 |
| 0.3264 | 94.3 | 146.9 | 159.9 | 182.8 |
| 0.4895 | 141.5 | 220.3 | 239.9 | 274.1 |
| 0.2538 | 73.3 | 114.2 | 124.4 | 142.1 |
| 0.1450 | 41.9 | 65.3 | 71.1 | 81.2 |
| 0.3989 | 115.3 | 179.5 | 195.5 | 223.4 |
Table 3 Shear stress (τ) of different twinning systems under different strain rates
Twinning system | m = cosλcosφ | τ | |||
---|---|---|---|---|---|
8.3 × 10-1 s-1 | 2300 s-1 | 3500 s-1 | 3800 s-1 | ||
| 0.3989 | 115.3 | 179.5 | 195.5 | 223.4 |
| 0.2538 | 73.3 | 114.2 | 124.4 | 142.1 |
| 0.1450 | 41.9 | 65.3 | 71.1 | 81.2 |
| 0.4895 | 141.5 | 220.3 | 239.9 | 274.1 |
| 0.1632 | 47.2 | 73.4 | 80.0 | 91.4 |
| 0.3263 | 94.3 | 146.8 | 159.9 | 182.7 |
| 0.1632 | 47.1 | 73.4 | 80.0 | 91.4 |
| 0.3264 | 94.3 | 146.9 | 159.9 | 182.8 |
| 0.4895 | 141.5 | 220.3 | 239.9 | 274.1 |
| 0.2538 | 73.3 | 114.2 | 124.4 | 142.1 |
| 0.1450 | 41.9 | 65.3 | 71.1 | 81.2 |
| 0.3989 | 115.3 | 179.5 | 195.5 | 223.4 |
[1] | N. Yan, H.S. Di, H.Q. Huang, R.D.K. Misra, Y.G. Deng, Acta Metall. Sin. Engl. Lett. 32, 1021 (2019) |
[2] |
H. Idrissi, K. Renard, L. Ryelandt, D. Schryvers, P.J. Jacques, Acta Mater. 58, 2464 (2010)
DOI URL |
[3] |
Q. Xie, Z. Pei, J. Liang, D. Yu, Z. Zhao, P. Yang, R. Li, M. Eisenbach, K. An, Acta Mater. 161, 273 (2018)
DOI URL |
[4] |
P. Xie, M. Han, C.L. Wu, Y.Q. Yin, K. Zhu, R.H. Shen, J.H. Chen, Mater. Des. 127, 1 (2017)
DOI URL |
[5] |
W. Wang, L. Meng, C. He, X. Wei, D. Wang, H. Du, Mater. Des. 47, 510 (2013)
DOI URL |
[6] | Z.L. Mi, D. Tang, Y.J. Dai, H.Q. Wang, S.S. Li, Acta Metall. Sin. Engl. Lett. 20, 441 (2007) |
[7] |
O. Bouaziz, S. Allain, C. Scott, Scr. Mater. 58, 484 (2008)
DOI URL |
[8] |
B.C. De Cooman, J. Kim, S. Lee, Scr. Mater. 66, 986 (2012)
DOI URL |
[9] |
Y.T. Zhu, X.Z. Liao, X.L. Wu, Prog. Mater. Sci. 57, 1 (2012)
DOI URL |
[10] |
J. Kim, Y. Estrin, B.C. De Cooman, Metall. Trans. A 44, 4168 (2013)
DOI URL |
[11] |
B. Mahato, S.K. Shee, T. Sahu, S. Ghosh Chowdhury, P. Sahu, D.A. Porter, L.P. Karjalainen, Acta Mater. 86, 69 (2015)
DOI URL |
[12] |
L. Bracke, L. Kestens, J. Penning, Scr. Mater. 61, 220 (2009)
DOI URL |
[13] |
B. Sun, F. Fazeli, C. Scott, N. Brodusch, R. Gauvin, Acta Mater. 148, 249 (2018)
DOI URL |
[14] |
J. Gu, L.X. Zhang, Y.H. Tang, M. Song, S. Ni, X.H. An, Y. Du, Z. Li, X.Z. Liao, Mater. Des. 160, 21 (2018)
DOI URL |
[15] |
S.Y. Lee, S.I. Lee, B. Hwang, Mater. Sci. Eng. A 711, 22 (2017)
DOI URL |
[16] |
O. Bouaziz, S. Allain, C.P. Scott, P. Cugy, D. Barbier, Curr. Opin. Solid State Mater. Sci. 15, 141 (2011)
DOI URL |
[17] |
B.C. De Cooman, O. Kwon, K.G. Chin, Mater. Sci. Technol. 28, 513 (2012)
DOI URL |
[18] |
Z.Y. Liang, Y.Z. Li, M.X. Huang, Scr. Mater. 112, 28 (2016)
DOI URL |
[19] |
W. Puschl, Prog. Mater. Sci. 47, 415 (2002)
DOI URL |
[20] |
W.P. Bao, Z.P. Xiong, F.M. Wang, J. Shu, X.P. Ren, Appl. Mech. Mater. 692, 179 (2014)
DOI URL |
[21] |
P. Zhou, Z.Y. Liang, M.X. Huang, Acta Mater. 149, 407 (2018)
DOI URL |
[22] |
K.M. Rahman, V.A. Vorontsov, D. Dye, Mater. Sci. Eng. A 589, 252 (2014)
DOI URL |
[23] |
S. Curtze, V.T. Kuokkala, Acta Mater. 58, 5129 (2010)
DOI URL |
[24] |
S.W. Hwang, J.H. Ji, K.T. Park, Mater. Sci. Eng. A 528, 7267 (2011)
DOI URL |
[25] |
J.T. Benzing, W.A. Poling, D.T. Pierce, J. Bentley, K.O. Findley, D. Raabe, J.E. Wittig, Mater. Sci. Eng. A 711, 78 (2018)
DOI URL |
[26] |
K. Li, B. Yu, R.D.K. Misra, G. Han, Y.T. Tsai, C.W. Shao, C.J. Shang, J.R. Yang, Z.Y. Zhang, Mater. Sci. Eng. A 742, 116 (2019)
DOI URL |
[27] |
Z.Y. Liang, X. Wang, W. Huang, M.X. Huang, Acta Mater. 88, 170 (2015)
DOI URL |
[28] |
P. Xie, S.C. Shen, C.L. Wu, J.H. Li, J.H. Chen, J. Mater. Sci. Technol. 89, 122 (2021)
DOI URL |
[29] | Y.R. Liu, C.L. Wu, P. Xie, X.P. Gong, S.C. Shen, J. Chin. Electr. Microsc. Soc. 39, 19 (2020). (in Chinese) |
[30] |
Z.N. Mao, X.H. An, X.Z. Liao, J.H. Wang, Mater. Sci. Eng. A 738, 430 (2018)
DOI URL |
[31] | S. Allain, J.P. Chateau, O. Bouaziz, S. Bouaziz, S. Migot, N. Guelton, Mater. Sci. Eng. A 387, 158 (2004) |
[32] |
Y. Cao, Y.B. Wang, X.H. An, X.Z. Liao, M. Kawasaki, S.P. Ringer, T.G. Langdon, Y.T. Zhu, Acta Mater. 63, 16 (2014)
DOI URL |
[33] |
Y. Cao, Y.B. Wang, X.H. An, X.Z. Liao, M. Kawasaki, S.P. Ringer, T.G. Langdon, Y.T. Zhu, Scr. Mater. 100, 98 (2015)
DOI URL |
[34] |
Y.B. Wang, X.Z. Liao, Y.H. Zhao, E.J. Lavernia, S.P. Ringer, Z. Horita, T.G. Langdon, Y.T. Zhu, Mater. Sci. Eng. A 527, 4959 (2010)
DOI URL |
[35] |
T. Ungár, S. Ott, P.G. Sanders, A. Borbély, J.R. Weertman, Acta Mater. 46, 3693 (1998)
DOI URL |
[36] |
T. Ungár, G. Tichy, J. Gubicza, R.J. Hellmig, Powder Diffr. 20, 366 (2005)
DOI URL |
[37] |
B.E. Warren, Prog. Met Phys. 8, 147 (1959)
DOI URL |
[38] | R.L. Fullman, Trans. AIME 197, 447 (1953) |
[39] |
R.W. Armstrong, S.M. Walley, Int. Mater. Rev. 53, 105 (2008)
DOI URL |
[40] |
G.G. Corbett, S.R. Reid, W. Johnson, Int. J. Impact Eng. 18, 141 (1996)
DOI URL |
[41] |
H.K. Yang, Z.J. Zhang, F.Y. Dong, Q.Q. Duan, Z.F. Zhang, Mater. Sci. Eng. A 607, 511 (2014)
DOI URL |
[42] |
D. Canadinc, C. Efstathiou, H. Sehitoglu, Scr. Mater. 59, 1103 (2008)
DOI URL |
[43] | L.X. Xu, H.B. Wu, X.T. Wang, Acta Metall. Sin. Engl. Lett. 31, 389 (2018) |
[44] |
P. Gao, Z.H. Ma, J. Gu, S. Ni, T. Suo, Y.L. Li, M. Song, Y.W. Mai, X.Z. Liao, Sci. China Mater. 65, 811 (2022)
DOI URL |
[45] |
D.T. Pierce, J.A. Jiménez, J. Bentlay, J. Bentley, D. Raabe, C. Oskay, J.E. Wittig, Acta Mater. 68, 238 (2014)
DOI URL |
[46] | W.S. Choi, B.C. De Cooman, S. Sandlöbes, D. Raabe, Acta Mater. 98, 931 (2015) |
[47] |
H. Suzuki, C.S. Barrett, Acta Metall. 6, 156 (1958)
DOI URL |
[48] |
O. Bouaziz, S. Allain, C.P. Scott, P. Cugy, D. Barbiera, Curr. Opin. Solid State Mater. Sci. 15, 141 (2011)
DOI URL |
[49] |
K.M. Rahman, V.A. Vorontsov, D. Dye, Acta Mater. 89, 247 (2015)
DOI URL |
[50] |
S.J. Chen, H.S. Oh, B. Gludovatz, S.J. Kim, E.S. Park, Z. Zhang, R.O. Ritchie, Q. Yu, Nat. Commun. 11, 826 (2020)
DOI URL |
[1] | Jian Peng, Jian Peng, Kai-Shang Li, Jun-Feng Pei, Chang-Yu Zhou. Temperature-Dependent SRS Behavior of 316L and Its Constitutive Model [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(3): 234-244. |
[2] | Yanxin WU, Di TANG, Haitao JIANG, Zhenli MI, Haitao JING. Texture and Microstructure Evolution During Tensile Testing of TWIP Steels with Diverse Stacking Fault Energy [J]. Acta Metallurgica Sinica (English Letters), 2013, 26(6): 713-720. |
[3] | . Strain rate sensitivity of ultrafine grained Cu with nanosized twins [J]. Acta Metallurgica Sinica (English Letters), 2006, 19(5): 313-318 . |
[4] | R. V. Safiullin, R.A. Vasin and F. U. Enikeev Institute for Metals Superplasticity Problems Khalturina, 39, Ufa, 450001, Russia. DETERMINATION OF THE PARAMETERS OF SUPERPLASTIC FORMING FOR LONG RECTANGULAR THIN SHEET TITANIUM ALLOY Ti-6A1-4V [J]. Acta Metallurgica Sinica (English Letters), 2000, 13(2): 567-573. |
[5] | HSU Shuen; YANG Sycherng; HON Weipirn; WANG Chienyi LEE Tsangsheau (Chung-Shan Institute of Science and Technology, Lung-Tan, Taiwan,China) HSU Ichung(National Taiwan University, Taipei, Taiwan, China) CHIN Stephen; ANTON Donald L.(United Technologies Research Center, East Hartford. CT, USA). STRAIN RATE SENSITIVTTY OF POLYCRYSTALLINE AND SINGLE CRYSTAL NiAl [J]. Acta Metallurgica Sinica (English Letters), 1995, 8(z1): 543-552. |
[6] | XU Zhensheng GONG Bo ZHANG Caibei LAI Zuhan Northeast University of Technology,Shenyang,China. EFFECT OF HYDROGEN ON HIGH TEMPERATURE PLASTICITY OF Ti-6Al-4V ALLOY [J]. Acta Metallurgica Sinica (English Letters), 1992, 5(1): 21-24. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||