Acta Metallurgica Sinica (English Letters) ›› 2022, Vol. 35 ›› Issue (10): 1617-1630.DOI: 10.1007/s40195-022-01394-7
Previous Articles Next Articles
Shaofan Ge1,2, Shifeng Lin1, Huameng Fu1,3,4(), Long Zhang1, Tieqiang Geng1, Zhengwang Zhu1,3,4, Zhengkun Li1,3, Hong Li1,3(
), Aimin Wang1,3,4, Hongwei Zhang1,3,4, Haifeng Zhang1,3,4
Received:
2021-11-05
Revised:
2021-12-10
Accepted:
2021-12-27
Online:
2022-04-09
Published:
2022-04-09
Contact:
Huameng Fu,Hong Li
About author:
Hong Li, lihong@imr.ac.cnShaofan Ge, Shifeng Lin, Huameng Fu, Long Zhang, Tieqiang Geng, Zhengwang Zhu, Zhengkun Li, Hong Li, Aimin Wang, Hongwei Zhang, Haifeng Zhang. High-temperature Mechanical Properties and Dynamic Recrystallization Mechanism of in situ Silicide-reinforced MoNbTaTiVSi Refractory High-entropy Alloy Composite[J]. Acta Metallurgica Sinica (English Letters), 2022, 35(10): 1617-1630.
Add to citation manager EndNote|Ris|BibTeX
Fig. 2 Microstructure of MoNbTaTiVSi refractory high-entropy alloy composite after 1200 °C annealing: a BSE image at lower magnification, b BSE image of eutectic area at higher magnification, c HADDF image of eutectic area, d EDS mapping of b, e and g HR image of the BCC phase and the Ti5Si3 phase, f and h SAED patterns of the BCC phase and the Ti5Si3 phase
Element | Melting temperature, Tm (°C)[62] | Average (at.%) | Dendritic (white) phase (at.%) | Dark phase (at.%) | $\Delta {H}_{\mathrm{mix}}$ with Si (kJ/mol) [31] |
---|---|---|---|---|---|
Si | 1414 | 18 | 3.82 | 30.45 | |
Ti | 1668 | 18.01 | 10.27 | 28.15 | - 66 |
V | 1910 | 17.6 | 22.4 | 12.96 | - 48 |
Nb | 2477 | 14.27 | 13.82 | 14.22 | - 56 |
Mo | 2623 | 14.05 | 22.96 | 5.58 | - 36 |
Ta | 3017 | 18.07 | 26.72 | 8.64 | - 56 |
Table 1 Chemical composition of each phase and the mixing enthalpy between Si and other elements
Element | Melting temperature, Tm (°C)[62] | Average (at.%) | Dendritic (white) phase (at.%) | Dark phase (at.%) | $\Delta {H}_{\mathrm{mix}}$ with Si (kJ/mol) [31] |
---|---|---|---|---|---|
Si | 1414 | 18 | 3.82 | 30.45 | |
Ti | 1668 | 18.01 | 10.27 | 28.15 | - 66 |
V | 1910 | 17.6 | 22.4 | 12.96 | - 48 |
Nb | 2477 | 14.27 | 13.82 | 14.22 | - 56 |
Mo | 2623 | 14.05 | 22.96 | 5.58 | - 36 |
Ta | 3017 | 18.07 | 26.72 | 8.64 | - 56 |
Fig. 3 a Engineering stress-strain curves tested at room temperature, 800 °C, 1000 °C and 1200 °C, b temperature dependence of specific yield stress for refractory HEAs [2,19,36,37,38,39,40,41,42,43,44]
Fig. 4 Microstructures of the composite after 1200 °C compression test with the strain at 0.5: a BSE image, b HADDF image of eutectic area, c BF image of the same area of b, d BF image for the example of LAGBs surrounded dislocation cell in the Ti5Si3 phase, e BF image for the example of bulging grain boundaries in the Ti5Si3 phase. The yellow circles mark the nuclei of dynamic recrystallized BCC phase
Fig. 6 EBSD results of HD10 and HD50 compression specimen: a, e IPF maps, b, f phase maps, c,g pole figures of the BCC phase, d, h pole figures of the Ti5Si3 phase
Fig. 7 a-g Recrystallized fraction maps for HD 10 and HD50, a, e whole detected area, b, f BCC phases, c, g Ti5Si3 phases, d, h strain contouring maps for HD 10 and HD50
Fig. 8 Detail of selected eutectic area as indicated by black frames in Fig. 7(d, h), a, b recrystallized fraction maps, e, g phase maps, f, h local misorientation maps, i, j band contrast map blended with grain boundary map
[1] | J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6, 299 (2004) |
[2] | O.N. Senkov, G.B. Wilks, J.M. Scott, D.B. Miracle,Intermetallics 19, 698 (2011) |
[3] | P. Shi, R. Li, Y. Li, Y. Wen, Y. Zhong, W. Ren, Z. Shen, T. Zheng, J. Peng, X. Liang, P. Hu, N. Min, Y. Zhang, Y. Ren, P.K. Liaw, D. Raabe, Y.D. Wang,Science 373, 912 (2021) |
[4] | Y.L. Zhao, T. Yang, Y.R. Li, L. Fan, B. Han, Z.B. Jiao, D. Chen, C.T. Liu, J.J. Kai, Acta Mater. 188, 517 (2020) |
[5] | H. Wan, D. Song, X. Shi, Y. Cai, T. Li, C. Chen, J. Mater. Sci. Technol. 60, 197 (2021) |
[6] | C. Xiang, Z.M. Zhang, H.M. Fu, E.H. Han, J.Q. Wang, H.F. Zhang, G.D. Hu, Acta Metall. Sin. -Engl. Lett. 32, 1053 (2019) |
[7] | A. Raphel, S. Kumaran, K.V. Kumar, L. Varghese, Mater. Today: Proc. 4, 195 (2017) |
[8] | S.K. Varma, F. Sanchez, S. Moncayo, C.V. Ramana, J. Mater. Sci. Technol. 38, 189 (2020) |
[9] | J. Pang, T. Xiong, X. Wei, Z. Zhu, B. Zhang, Y. Zhou, X. Shao, Q. Jin, S. Zheng, X. Ma, Materialia 6 (2019). |
[10] | Z.J. Zhang, E.H. Han, C. Xiang, J. Mater. Sci. Technol. 84, 230 (2021) |
[11] | Y. Ji, L. Zhang, X. Lu, H. Fu, Z. Zhu, H. Li, H. Zhang, H. Zhang,Intermetallics 138, 107339 (2021) |
[12] | S. Li, J. Li, J. Shi, Y. Peng, X. Peng, X. Sun, F. Jin, J. Xiong, F. Zhang, J. Mater. Sci. Technol. 96, 140 (2022) |
[13] | H. Jiang, D.X. Qiao, W.N. Jiao, K.M. Han, Y.P. Lu, P.K. Liaw, J. Mater. Sci. Technol. 61, 119 (2021) |
[14] | J.Y. Pang, H.W. Zhang, L. Zhang, Z.W. Zhu, H.M. Fu, H. Li, A.M. Wang, Z.K. Li, H.F. Zhang, J. Mater. Sci. Technol. 78, 74 (2021) |
[15] | J.M. Zhu, H.M. Fu, H.F. Zhang, A.M. Wang, H. Li, Z.Q. Hu, J. Alloys Compd. 509, 3476 (2011) |
[16] | Y. Zhang, Y. Liu, Y.X. Li, X. Chen, H.W. Zhang, Mater. Lett. 174, 82 (2016) |
[17] | N.N. Guo, L. Wang, L.S. Luo, X.Z. Li, R.R. Chen, Y.Q. Su, J.J. Guo, H.Z. Fu, J. Alloys Compd. 660, 197 (2016) |
[18] | X.D. Sun, H.G. Zhu, J.L. Li, J.W. Huang, Z.H. Xie, Mater. Chem. Phys. 220, 449 (2018) |
[19] | Y. Liu, Y. Zhang, H. Zhang, N. Wang, X. Chen, H. Zhang, Y. Li, J. Alloys Compd. 694, 869 (2017) |
[20] | C.M. Liu, H.M. Wang, S.Q. Zhang, H.B. Tang, A.L. Zhang, J. Alloys Compd. 583, 162 (2014) |
[21] | J.M. Zhu, H.M. Fu, H.F. Zhang, A.M. Wang, H. Li, Z.Q. Hu, Mater. Sci. Eng. A 527, 7210 (2010) |
[22] | L. Zhang, J. Wu, Acta Mater. 46, 3535 (1998) |
[23] | K. Guan, L. Jia, B. Kong, S. Yuan, H. Zhang, Mater. Sci. Eng. A 663, 98 (2016) |
[24] | Y. Jiao, L.J. Huang, S.L. Wei, L. Geng, M.F. Qian, S. Yue, Corros. Sci. 140, 223 (2018) |
[25] | Y. Jiao, L.J. Huang, Q. An, S. Jiang, Y.N. Gao, X.P. Cui, L. Geng, Mater. Sci. Eng. A 673, 595 (2016) |
[26] | S.I. Wright, M.M. Nowell, D.P. Field, Microsc. Microanal. 17, 316 (2011) |
[27] | D. Field, L. Bradford, M. Nowell, T. Lillo, Acta Mater. 55, 4233 (2007) |
[28] | N.N. Guo, L. Wang, L.S. Luo, X.Z. Li, R.R. Chen, Y.Q. Su, J.J. Guo, H.Z. Fu, Mater. Sci. Eng. A 651, 698 (2016) |
[29] | K. Kishida, M. Fujiwara, H. Adachi, K. Tanaka, H. Inui, Acta Mater. 58, 846 (2010) |
[30] | W. Zhang, P.K. Liaw, Y. Zhang, Sci. China Mater. 61, 2 (2018) |
[31] | A. Takeuchi, A. Inoue, Mater. Trans. 46, 2817 (2005) |
[32] | R. Rosenkranz, G. Frommeyer, W. Smarsly,High Temp. Aluminides Intermet., Proc. Symp. 152, 288 (1992). |
[33] | P. Rodriguez, Bull. Mater. Sci.6, 653 (1984) |
[34] | S. Wei, J. Kim, C.C. Tasan, Acta Mater. 168, 76 (2019) |
[35] | H. J. McQueen, J. J. Jonas, ed. by R. J. Arsenault, plastic deformation of materials, (ACADEMIC PRESS, London, 1975), p. 393. |
[36] | O.N. Senkov, J.M. Scott, S.V. Senkova, F. Meisenkothen, D.B. Miracle, C.F. Woodward, J. Mater. Sci.47, 4062 (2012) |
[37] | C.C. Juan, M.H. Tsai, C.W. Tsai, C.M. Lin, W.R. Wang, C.C. Yang, S.K. Chen, S.J. Lin, J.W. Yeh,Intermetallics 62, 76 (2015) |
[38] | Z.D. Han, N. Chen, S.F. Zhao, L.W. Fan, G.N. Yang, Y. Shao, K.F. Yao,Intermetallics 84, 153 (2017) |
[39] | O.A. Waseem, J. Lee, H.M. Lee, H.J. Ryu, Mater. Chem. Phys. 210, 87 (2018) |
[40] | M. Wang, Z. Ma, Z. Xu, X. Cheng, J. Alloys Compd. 803, 778 (2019) |
[41] | S. Das, P.S. Robi, Int. J. Refract. Met. Hard Mater. 100, 105656 (2021) |
[42] | B. Kang, T. Kong, H.J. Ryu, S.H. Hong, J. Mater. Sci. Technol. 69, 32 (2021) |
[43] | O.N. Senkov, J. Gild, T.M. Butler, J. Alloys Compd. 862, 158003 (2021) |
[44] | S. Wu, D. Qiao, H. Zhao, J. Wang, Y. Lu, J. Alloys Compd. 889, 161800 (2021) |
[45] | Z. Guo, A. Zhang, J. Han, J. Meng, J. Mater. Sci.54, 10077 (2019) |
[46] | D.W. Suh, T. Inoue, S. Torizuka, A. Ohmori, K. Nagai, ISIJ Int. 42, 1026 (2002) |
[47] | P. Cizek, B.P. Wynne, Mater. Sci. Eng. A 230, 88 (1997) |
[48] | F. J. Humphreys, M. Hatherly, ed. by F. J. Humphreys and M. Hatherly(Eds.), Recrystallization and related annealing phenomena, (Elsevier, Oxford, 2004), p. 415. |
[49] | J.L. Qu, X.F. Xie, Z.N. Bi, J.H. Du, M.C. Zhang, J. Alloys Compd. 785, 918 (2019) |
[50] | A.M. Wusatowska-Sarnek, H. Miura, T. Sakai, Mater. Sci. Eng. A 323, 177 (2002) |
[51] | J. Chen, J. Dong, M. Zhang, Z. Yao, Mater. Sci. Eng. A 673, 122 (2016) |
[52] | F. Gao, Y.R. Xu, B.Y. Song, K.N. Xia, Metall. Mater. Trans. A 31, 21 (2000) |
[53] | X.Y. Yang, H. Miura, T. Sakai, Mater. Trans. 43, 2400 (2002) |
[54] | K. Huang, R.E. Logé, Mater. Des. 111, 548 (2016) |
[55] | W. Blum, Q. Zhu, R. Merkel, H.J. McQueen, Mater. Sci. Eng. A 205, 23 (1996) |
[56] | A. Gholinia, F. Humphreys, P.B. Prangnell, Acta Mater. 50, 4461 (2002) |
[57] | M.E. Kassner, S.R. Barrabes, Mater. Sci. Eng. A 410, 152 (2005) |
[58] | E. Antillon, C. Woodward, S. I. Rao, B. Akdim, Acta Mater. 215 (2021). |
[59] | W. Huang, J. Chen, H. Yan, W. Xia, B. Su, W. Zhu, Met. Mater. Int. 26, 747 (2019) |
[60] | Y.X. Huang, Y.B. Wang, X.C. Meng, L. Wan, J. Cao, L. Zhou, J.C. Feng, J. Mater. Process. Technol. 249, 331 (2017) |
[61] | A.A. Khamei, K. Dehghani, J. Alloys Compd. 490, 377 (2010) |
[62] | The periodic table of the elements, https://www.webelements.com. |
[1] | Junrong Tang, Naeem ul Haq Tariq, Zhipo Zhao, Mingxiao Guo, Hanhui Liu, Yupeng Ren, Xinyu Cui, Yanfang Shen, Jiqiang Wang, Tianying Xiong. Microstructure and Mechanical Properties of Ti-Ta Composites Prepared Through Cold Spray Additive Manufacturing [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(9): 1465-1476. |
[2] | Sihan Chen, Tian Liang, Guangcai Ma, Chengwu Zheng, Deli Chen, Yingche Ma, Kui Liu. High-Temperature Plasticity Enhanced by Multiple Secondary Phases in a High-Si Austenitic Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(9): 1519-1530. |
[3] | Fei Qiang, Wen Wang, Ke Qiao, Pai Peng, Ting Zhang, Xiao-Hu Guan, Jun Cai, Qiang Meng, Hua-Xia Zhao, Kuai-She Wang. Microstructure and Mechanical Properties in Friction Stir Welded Thick Al-Zn-Mg-Cu Alloy Plate [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1329-1342. |
[4] | Chang Liu, Jianbo Zhang, Yikai Yang, Xingchuan Xia, Tian He, Jian Ding, Ying Tang, Zan Zhang, Xueguang Chen, Yongchang Liu. Hot Deformation Behavior of ATI 718Plus Alloy with Different Microstructures [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1383-1396. |
[5] | Haoyang Yu, Wei Fang, Jinfei Zhang, Jiaxin Huang, Jiaohui Yan, Xin Zhang, Juan Wang, Jianhang Feng, Fuxing Yin. Microstructural Evolution of Co35Cr25Fe30Ni10 TRIP Complex Concentrated Alloy with the Addition of Minor Cu and Its Effect on Mechanical Properties [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1291-1300. |
[6] | Xiong Zhou, Qichi Le, Chenglu Hu, Ruizhen Guo, Tong Wang, Chunming Liu, Dandan Li, Xiaoqiang Li. Mechanical Properties and Corrosion Behavior of Multi-Microalloying Mg Alloys Prepared by Adding AlCoCrFeNi Alloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1301-1316. |
[7] | Bao-Jia Hu, Qin-Yuan Zheng, Chun-Ni Jia, Peng Liu, Yi-Kun Luan, Cheng-Wu Zheng, Dian-Zhong Li. Improvement of Mechanical Properties of a Medium-Mn TRIP Steel by Precursor Microstructure Control [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1068-1078. |
[8] | Pengcheng Zhu, Lin Zhang, Zhaochang Li, K. H. Lo, Jianfeng Wang, Yufeng Sun, Shaokang Guan. Microstructure and Mechanical Properties of Friction Stir Welded 1.5 GPa Martensitic High-Strength Steel Plates [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1079-1089. |
[9] | Zhenye Chen, Zhangguo Lin, Jianjun Qi, Yang Feng, Liqing Chen, Guodong Wang. Microstructures and Mechanical Properties of a New Multi-functional 460 MPa Grade Construction Structural Steel [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1131-1142. |
[10] | Ming-Jie Zhao, Liang Huang, Chang-Min Li, Jia-Hui Xu, Xu-Yang Li, Jian-Jun Li, Peng-Chuan Li, Chao-Yuan Sun. Investigation and Modeling of Austenite Grain Evolution for a Typical High-strength Low-alloy Steel during Soaking and Deformation Process [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(6): 996-1010. |
[11] | Hao Gu, Zhide Li, Kaiguang Luo, Laxman Bhatta, Hanqing Xiong, Yun Zhang, Charlie Kong, Hailiang Yu. Enhanced Mechanical Properties of AA5083 Matrix Composite via Introducing Al0.5CoCrFeNi Particles and Cryorolling [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(6): 879-889. |
[12] | Wen Wang, Shan-Yong Chen, Ke Qiao, Pai Peng, Peng Han, Bing Wu, Chen-Xi Wang, Jia Wang, Yu-Hao Wang, Kuai-She Wang. Microstructure, Mechanical Properties, and Corrosion Behavior of Mg-Al-Ca Alloy Prepared by Friction Stir Processing [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 703-713. |
[13] | Peng Gong, Ying-Ying Zuo, Shu-De Ji, De-Jun Yan, Deng-Chang Li, Zhen Shang. Non-keyhole Friction Stir Welding for 6061-T6 Aluminum Alloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 763-772. |
[14] | Jinjin Yao, Shengyang Pang, Yuanhong Wang, Chenglong Hu, Rida Zhao, Jian Li, Sufang Tang, Hui-Ming Cheng. Effect of C/SiC Volume Ratios on Mechanical and Oxidation Behaviors of Cf/C-SiC Composites Fabricated by Chemical Vapor Infiltration Technique [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 801-811. |
[15] | Zhengran Liu, Xi Zhao, Kai Chen, Siqi Wang, Xianwei Ren, Zhimin Zhang, Yong Xue. Microstructural Evolution and Anisotropic Weakening Mechanism of ZK60 Magnesium Alloy Processed by Isothermal Repetitive Upsetting Extrusion [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 839-852. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||