Acta Metallurgica Sinica (English Letters) ›› 2024, Vol. 37 ›› Issue (9): 1533-1550.DOI: 10.1007/s40195-024-01730-z
Previous Articles Next Articles
Xue Han1, Dan Zhang2, Song Zhang1(), Mohammed R. I. Abueida2, Lili Tan3, Xiaopeng Lu4, Qiang Wang2, Huanye Liu2(
)
Received:
2024-01-16
Revised:
2024-02-21
Accepted:
2024-03-13
Online:
2024-09-10
Published:
2024-06-25
Contact:
Song Zhang, songzhang_sy@163.com;Huanye Liu, dentist_ye@163.com
Xue Han, Dan Zhang, Song Zhang, Mohammed R. I. Abueida, Lili Tan, Xiaopeng Lu, Qiang Wang, Huanye Liu. Fatigue and Corrosion Fatigue Properties of Mg-Zn-Zr-Nd Alloys in Glucose-Containing Simulated Body Fluids[J]. Acta Metallurgica Sinica (English Letters), 2024, 37(9): 1533-1550.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 Equipment diagram of fatigue test a, stress-life (S-N) curves of extruded Mg-2Zn-0.5Zr-0.5Nd alloy in air and HBSS containing different concentrations of glucose b, diagram of fatigue sample c
Components | NaCl | CaCl2 | KCl | MgCl2·6H2O | MgSO4·7H2O | Na2HPO4·12H2O | KH2PO4 | NaHCO3 | C6H6O6 |
---|---|---|---|---|---|---|---|---|---|
Concentration | 8.00 | 0.14 | 0.40 | 0.10 | 0.10 | 0.12 | 0.06 | 0.35 | 1.00 |
Table 1 Formulation of Hank’s balanced salt solution (g/L)
Components | NaCl | CaCl2 | KCl | MgCl2·6H2O | MgSO4·7H2O | Na2HPO4·12H2O | KH2PO4 | NaHCO3 | C6H6O6 |
---|---|---|---|---|---|---|---|---|---|
Concentration | 8.00 | 0.14 | 0.40 | 0.10 | 0.10 | 0.12 | 0.06 | 0.35 | 1.00 |
Fig. 2 Grain of the extruded Mg-2Zn-0.5Zr-0.5Nd alloy a, XRD phase analysis b, tensile stress-strain curve c, mechanical properties of the alloy d, diagram of tensile sample e
Materials | Sample type | Cycle mode | Frequency (Hz) | Medium | Fatigue strength in air (MPa) | Corrosion fatigue strength (MPa) | References |
---|---|---|---|---|---|---|---|
Mg-Y-Zn | As extruded | Push-pull | 100 | 0.9% NaCl | 95 (Nf=106) | 28 (Nf=106) | [ |
AZ91D | Die-cast | - | 10 | SBF | 50 (Nf=107) | 20 (Nf=106) | [ |
AZ91D | Sand-cast | Fully reversed | 5 | m-SBF | 57 (Nf=107) | 17 (Nf=5×105) | [ |
HP-Mg | As extruded | Tension-compression | 10 | SBF | 89 (Nf=106) | 52 (Nf=106) | [ |
Mg-2Zn-0.2Ca | As extruded | Tension-compression | 10 | SBF | 87 (Nf=4×106) | 68 (Nf=106) | [ |
Mg-2Zn-0.5Zr-0.5Nd | As extruded | Tension-compression | 2 | HBSS (contains different concentrations of glucose) | 127 (Nf=106) | 88, (1 g/L glucose) 70, (3 g/L glucose) (Nf=106) | Present work |
Table 2 Comparison of fatigue and corrosion fatigue testing of Mg alloys
Materials | Sample type | Cycle mode | Frequency (Hz) | Medium | Fatigue strength in air (MPa) | Corrosion fatigue strength (MPa) | References |
---|---|---|---|---|---|---|---|
Mg-Y-Zn | As extruded | Push-pull | 100 | 0.9% NaCl | 95 (Nf=106) | 28 (Nf=106) | [ |
AZ91D | Die-cast | - | 10 | SBF | 50 (Nf=107) | 20 (Nf=106) | [ |
AZ91D | Sand-cast | Fully reversed | 5 | m-SBF | 57 (Nf=107) | 17 (Nf=5×105) | [ |
HP-Mg | As extruded | Tension-compression | 10 | SBF | 89 (Nf=106) | 52 (Nf=106) | [ |
Mg-2Zn-0.2Ca | As extruded | Tension-compression | 10 | SBF | 87 (Nf=4×106) | 68 (Nf=106) | [ |
Mg-2Zn-0.5Zr-0.5Nd | As extruded | Tension-compression | 2 | HBSS (contains different concentrations of glucose) | 127 (Nf=106) | 88, (1 g/L glucose) 70, (3 g/L glucose) (Nf=106) | Present work |
Fig. 3 Fracture morphologies of Mg-2Zn-0.5Zr-0.5Nd alloy after fatigue failure in air: a, d σ=151 MPa, Nf=4.2396×104; b, e σ=151 MPa, Nf=4.2396×104; c, f σ=135 MPa, Nf=5.26513×105
Fig. 5 Fracture morphologies of Mg-2Zn-0.5Zr-0.5Nd alloy failed by fatigue in HBSS containing 1 g/L glucose: a-d σ=127 MPa, Nf=2.3240×104; e-h σ=111 MPa, Nf=8.7085×104; i-l σ=100 MPa, Nf=8.55101×105
Fig. 6 Fracture morphologies of Mg-2Zn-0.5Zr-0.5Nd alloy failed by fatigue in HBSS containing 3 g/L glucose: a-d σ=104 MPa, Nf=1.7878×104; e-h σ=88 MPa, Nf=1.11128×105; i-l σ=72 MPa, Nf=8.49961×105
Fig. 7 Lateral corrosion morphologies of specimens after fatigue fracture in HBSS containing different concentrations of glucose: 1 g/L glucose: a, b σ=127 MPa, Nf=2.3240×104; c, d σ=111 MPa, Nf=8.7085×104; e, f σ=100 MPa, Nf=8.55101×105; 3 g/L glucose: g, h σ=104 MPa, Nf=1.7878×104; i, j σ=88 MPa, Nf=1.11128×105; k, l σ=72 MPa, Nf=8.49961×105
Fig. 8 Polarization curves of the alloy in HBSS containing different concentrations of glucose a, Nyquist plots of the alloy after immersion in HBSS containing different concentrations of glucose for 7 days b, Bode plots c, equivalent circuit d, pH value of the alloy after immersion in HBSS containing different concentrations of glucose for 14 days e, corrosion rate obtained by weight loss f
Samples | Ecorr (V) | Icorr (μA/cm2) | Corrosion rate (mm/y) |
---|---|---|---|
1 g/L glucose | −1.51±0.02 | 6.56±0.82 | 0.15±0.02 |
3 g/L glucose | −1.52±0.01 | 10.9±1.15 | 0.25±0.03 |
Table 3 Electrochemical parameters of the alloy in HBSS solution
Samples | Ecorr (V) | Icorr (μA/cm2) | Corrosion rate (mm/y) |
---|---|---|---|
1 g/L glucose | −1.51±0.02 | 6.56±0.82 | 0.15±0.02 |
3 g/L glucose | −1.52±0.01 | 10.9±1.15 | 0.25±0.03 |
Conditions | Rs (Ω·cm2) | CPE1 (Ω−1·cm−2 ·sn) | n1 | R1 (Ω·cm2) | CPE2 (Ω−1·cm−2 ·sn) | n2 | R2 (Ω·cm2) | R3 (Ω·cm2) | L (H·cm−2) |
---|---|---|---|---|---|---|---|---|---|
1 g/L-1 h | 17.27 | 1.45×10−5 | 0.68 | 187.9 | 1.21×10−5 | 0.94 | 1.62×103 | 874.8 | 5.06×103 |
3 g/L-1 h | 18.31 | 1.89×10−5 | 0.60 | 145.5 | 1.92×10−5 | 0.90 | 846.6 | 504 | 3.05×103 |
1 g/L-1 d | 17.6 | 2.6×10−5 | 0.62 | 142.2 | 1.48×10−5 | 0.86 | 2.8×103 | 1.23×103 | 3.44×103 |
3 g/L-1 d | 19.1 | 1.3×10−5 | 0.87 | 155.1 | 3.16×10−5 | 0.62 | 2.2×103 | 1.24×103 | 5.75×103 |
1 g/L-3 d | 16.8 | 6.62×10−6 | 0.60 | 781.7 | 1.08×10−5 | 0.78 | 9.03×103 | 3.24×104 | 6.2×103 |
3 g/L-3 d | 19.2 | 8.11×10−6 | 0.79 | 645 | 1.44×10−5 | 0.70 | 8.32×103 | 4.04×104 | 4.19×103 |
1 g/L-7 d | 18.52 | 2.27×10−6 | 0.61 | 2.07×103 | 4.76×10−6 | 0.83 | 1.33×104 | 6.48×104 | 7.27×104 |
3 g/L-7 d | 20.37 | 2.85×10−6 | 0.63 | 1.53×103 | 7.07×10−6 | 0.84 | 9.62×103 | 3.15×104 | 7.42×104 |
Table 4 Fitted EIS parameters of alloys immersed for 7 days in HBSS containing different concentrations of glucose
Conditions | Rs (Ω·cm2) | CPE1 (Ω−1·cm−2 ·sn) | n1 | R1 (Ω·cm2) | CPE2 (Ω−1·cm−2 ·sn) | n2 | R2 (Ω·cm2) | R3 (Ω·cm2) | L (H·cm−2) |
---|---|---|---|---|---|---|---|---|---|
1 g/L-1 h | 17.27 | 1.45×10−5 | 0.68 | 187.9 | 1.21×10−5 | 0.94 | 1.62×103 | 874.8 | 5.06×103 |
3 g/L-1 h | 18.31 | 1.89×10−5 | 0.60 | 145.5 | 1.92×10−5 | 0.90 | 846.6 | 504 | 3.05×103 |
1 g/L-1 d | 17.6 | 2.6×10−5 | 0.62 | 142.2 | 1.48×10−5 | 0.86 | 2.8×103 | 1.23×103 | 3.44×103 |
3 g/L-1 d | 19.1 | 1.3×10−5 | 0.87 | 155.1 | 3.16×10−5 | 0.62 | 2.2×103 | 1.24×103 | 5.75×103 |
1 g/L-3 d | 16.8 | 6.62×10−6 | 0.60 | 781.7 | 1.08×10−5 | 0.78 | 9.03×103 | 3.24×104 | 6.2×103 |
3 g/L-3 d | 19.2 | 8.11×10−6 | 0.79 | 645 | 1.44×10−5 | 0.70 | 8.32×103 | 4.04×104 | 4.19×103 |
1 g/L-7 d | 18.52 | 2.27×10−6 | 0.61 | 2.07×103 | 4.76×10−6 | 0.83 | 1.33×104 | 6.48×104 | 7.27×104 |
3 g/L-7 d | 20.37 | 2.85×10−6 | 0.63 | 1.53×103 | 7.07×10−6 | 0.84 | 9.62×103 | 3.15×104 | 7.42×104 |
Fig. 9 SEM photographs of cross-sectional corrosion product layers of Mg-2Zn-0.5Zr-0.5Nd alloy after immersion in HBSS containing 1 g/L glucose and 3 g/L glucose for 1, 3, 7 and 14 days
Fig. 10 EDS surface scanning of cross-section corrosion product layers of Mg-2Zn-0.5Zr-0.5Nd alloy after immersion in HBSS containing 1 g/L glucose for 1, 3, 7 and 14 days
Fig. 11 EDS surface scanning of cross-section corrosion product layers of Mg-2Zn-0.5Zr-0.5Nd alloy after immersion in HBSS containing 3 g/L glucose for 1, 3, 7 and 14 days
Condition | Elemental composition (wt%) | |||
---|---|---|---|---|
Mg | O | Ca | P | |
1 g/L-1 d | 84.3 | 5.7 | 4.2 | 0.6 |
1 g/L-3 d | 65.6 | 15.4 | 3.2 | 0.5 |
1 g/L-7 d | 41.8 | 33.5 | 11.9 | 3.1 |
1 g/L-14 d | 36.6 | 31.5 | 17.3 | 9.9 |
3 g/L-1 d | 36.6 | 43.9 | 8.3 | 2.3 |
3 g/L-3 d | 62.4 | 12.5 | 9.4 | 2.3 |
3 g/L-7 d | 67.3 | 16.9 | 8.5 | 1.3 |
3 g/L-14 d | 51.7 | 19.4 | 14.9 | 9.5 |
Table 5 EDS surface scanning elemental composition of cross-section corrosion product layers of Mg-2Zn-0.5Zr-0.5Nd alloy after immersion in HBSS containing different concentrations of glucose
Condition | Elemental composition (wt%) | |||
---|---|---|---|---|
Mg | O | Ca | P | |
1 g/L-1 d | 84.3 | 5.7 | 4.2 | 0.6 |
1 g/L-3 d | 65.6 | 15.4 | 3.2 | 0.5 |
1 g/L-7 d | 41.8 | 33.5 | 11.9 | 3.1 |
1 g/L-14 d | 36.6 | 31.5 | 17.3 | 9.9 |
3 g/L-1 d | 36.6 | 43.9 | 8.3 | 2.3 |
3 g/L-3 d | 62.4 | 12.5 | 9.4 | 2.3 |
3 g/L-7 d | 67.3 | 16.9 | 8.5 | 1.3 |
3 g/L-14 d | 51.7 | 19.4 | 14.9 | 9.5 |
Fig. 12 XPS spectra of corrosion products of Mg-2Zn-0.5Zr-0.5Nd alloy after 7 days immersion in HBSS containing 1 g/L glucose: total energy spectrum a, C1s b, O1s c, Mg1s d, Mg2p e, Ca2p f
Fig. 13 XPS spectra of corrosion products of Mg-2Zn-0.5Zr-0.5Nd alloy after 7 days immersion in HBSS containing 3 g/L glucose: total energy spectrum a, C1s b, O1s c, Mg1s d, Mg2p e, Ca2p f
[1] | S. Abazari, A. Shamsipur, H.R. Bakhsheshi-Rad, J. Magnes. Alloy. 10, 3612 (2022) |
[2] | D. Zhao, F. Witte, F. Lu, J. Wang, J. Li, L. Qin, Biomaterials 112,287 (2017) |
[3] | H.R. Bakhsheshi-Rad, E. Hamzah, H.T. Low, M.H. Cho, M. Kasiri-Asgarani, S. Farahany, A. Mostafa, M. Medraj, Acta Metall. Sin. -Engl. Lett. 30, 201 (2017) |
[4] | M.S. Song, R.C. Zeng, Y.F. Ding, R.W. Li, M. Easton, I. Cole, N. Birbilis, X.B. Chen, J. Mater. Sci. Technol. 35, 535 (2019) |
[5] | N. Wang, S. Yang, H. Shi, Y. Song, H. Sun, Q. Wang, L. Tan, S. Guo, J. Magnes. Alloy. 10, 3327 (2022) |
[6] | L. Lei, Z. Cui, H. Pan, K. Pang, X. Wang, H. Cui, Corros. Sci. 195, 109975 (2022) |
[7] | C. Liu, X. Chen, Y. Wu, Y. Hu, W. Zhang, Y. Zhang, J. Bai, F. Pan, Acta Metall. Sin. -Engl. Lett. 36, 1281 (2023) |
[8] |
D. Zhang, Q. Han, K. Yu, X. Lu, Y. Liu, Z. Lu, Q. Wang, J. Mater. Sci. Technol. 61, 33 (2021)
DOI |
[9] | X. Zhou, Q. Zhang, J. Lu, Y. Zheng, L. Wu, D. Xu, X. Zhang, Q. Wang, Acta Metall. Sin. -Engl. Lett. 36, 1961 (2023) |
[10] | J.L. Wang, J.K. Xu, C. Hopkins, D.H. Chow, L. Qin, Adv. Sci. (Weinh) 7,19024 (2020) |
[11] | A. Yamamoto, S. Hiromoto, Mater. Sci. Eng. C 29, 1559 (2009) |
[12] | Y. Shao, R.C. Zeng, S.Q. Li, L.Y. Cui, Y.H. Zou, S.K. Guan, Y.F. Zheng, Acta Metall. Sin. -Engl. Lett. 33, 615 (2020) |
[13] | X. Li, X. Liu, S. Wu, K.W.K. Yeung, Y. Zheng, P.K. Chu, Acta Biomater. 45, 2 (2016) |
[14] | S. Agarwal, J. Curtin, B. Duffy, S. Jaiswal, Mater. Sci. Eng. C Mater. Biol. Appl. 68, 948 (2016) |
[15] | H.Y. Niu, F.F. Cao, K.K. Deng, K.B. Nie, J.W. Kang, H.W. Wang, Acta Metall. Sin. -Engl. Lett. 33, 362 (2019) |
[16] | S. Abazari, A. Shamsipur, H.R. Bakhsheshi-Rad, J.W. Drelich, J. Goldman, S. Sharif, A.F. Ismail, M. Razzaghi, J. Magnes. Alloy. 11, 2655 (2023) |
[17] | R.K.S. Raman, S.E. Harandi, Materials (Basel) 10,1316 (2017) |
[18] | S. Jafari, S.E. Harandi, R.K. Singh Raman, JOM 67,1143 (2015) |
[19] | R.K. Singh Raman, S. Jafari, S.E. Harandi, Eng. Fract. Mech. 137, 97 (2015) |
[20] | R.C. Zeng, Y. Hu, S.K. Guan, H.Z. Cui, E.H. Han, Corros. Sci. 86, 171 (2014) |
[21] | S. Cabeza, P. Pérez Zubiaur, G. Garcés, C. Andrade, P. Adeva, Metals. 10, 148 (2020) |
[22] | Y. Jang, B. Collins, J. Sankar, Y. Yun, Acta Biomater. 9, 8761 (2013) |
[23] | F. Witte, Acta Biomater. 6, 1680 (2010) |
[24] | R.C. Zeng, X.T. Li, S.Q. Li, F. Zhang, E.H. Han, Sci. Rep. 5, 13026 (2015) |
[25] | Y. Liu, Z. Liu, L. Liu, H. Xue, Q. Wang, D. Zhang, Adv. Eng. Mater. 23, 2001451 (2021) |
[26] | Y. Wang, L.Y. Cui, R.C. Zeng, S.Q. Li, Y.H. Zou, E.H. Han, Materials 10,725 (2017) |
[27] | W. Yan, Y.J. Lian, Z.Y. Zhang, M.Q. Zeng, Z.Q. Zhang, Z.Z. Yin, L.Y. Cui, R.C. Zeng, Bioact. Mater. 5, 318 (2020) |
[28] | S. Liu, B. Wang, J. Mater. Res. Technol. 9, 6612 (2020) |
[29] | Z. Li, X. Guo, Y. Zhang, G. Liu, S. Zhang, Chem. Res. Chin. Univ. 36, 1217 (2020) |
[30] | L.Y. Cui, X.T. Li, R.C. Zeng, S.Q. Li, E.H. Han, L. Song, Front. Mater. Sci. 11, 284 (2017) |
[31] | S. Jin, D. Zhang, X. Lu, Y. Zhang, L. Tan, Y. Liu, Q. Wang, J. Mater. Sci. Technol. 47, 190 (2020) |
[32] | C. Dou, M. Zhang, D. Ren, H. Ji, Z. Yi, S. Wang, Z. Liu, Q. Wang, Y. Zheng, Z. Zhang, J. Mater. Sci. Technol. 146, 211 (2023) |
[33] | W. Hu, W. Huang, Y. Sun, W. Zhang, L. Tan, S. Zhang, G. Ma, D. Zhang, Q. Wang, J. Mater. Res. Technol. 22, 2627 (2023) |
[34] | M. Liu, J. Wang, S. Zhu, Y. Zhang, Y. Sun, L. Wang, S. Guan, J. Magnes. Alloy. 8, 231 (2020) |
[35] | J. Chen, S. Wei, L. Tan, K. Yang, Mater. Technol. 34, 592 (2019) |
[36] | S. Jafari, R.K. Singh Raman, C.H.J. Davies, Eng. Fract. Mech. 137, 2 (2015) |
[37] | D. Bian, W. Zhou, Y. Liu, N. Li, Y. Zheng, Z. Sun, Acta Biomater. 41, 351 (2016) |
[38] | D. Bian, W. Zhou, J. Deng, Y. Liu, W. Li, X. Chu, P. Xiu, H. Cai, Y. Kou, B. Jiang, Y. Zheng, Acta Biomater. 64, 421 (2017) |
[39] | J. Chen, L. Tan, I.P. Etim, K. Yang, Mater. Technol. 33, 659 (2018) |
[40] | X. Cui, S. Zhang, Z.Y. Wang, C.H. Zhang, C.L. Ni, C.L. Wu, Mater. Sci. Eng. A 845, 143215 (2022) |
[41] | M.S. Bhuiyan, Y. Mutoh, T. Murai, S. Iwakami, Int. J. Fatigue 30,1756 (2008) |
[42] |
X.N. Gu, W.R. Zhou, Y.F. Zheng, Y. Cheng, S.C. Wei, S.P. Zhong, T.F. Xi, L.J. Chen, Acta Biomater. 6, 4605 (2010)
DOI PMID |
[43] | N. Wegner, D. Kotzem, Y. Wessarges, N. Emminghaus, C. Hoff, J. Tenkamp, J. Hermsdorf, L. Overmeyer, F. Walther, Materials 12, 2892 (2019) |
[44] | J. Hu, Q. Li, H. Gao, Acta Metall. Sin. -Engl. Lett. 34, 65 (2020) |
[45] | G. Chen, L.T. Lu, Y. Cui, R.S. Xing, H. Gao, X. Chen, Int. J. Fatigue 80, 364 (2015) |
[46] | X.Z. Shi, Z.Y. Cui, J. Li, B.C. Hu, Y.Q. An, X. Wang, H.Z. Cui, Acta Metall. Sin. -Engl. Lett. 36, 1421 (2023) |
[47] | J. Tong, X. Han, S. Wang, X. Jiang, Energy Fuels 25, 4006 (2011) |
[48] | D. Bian, X. Chu, J. Xiao, Z. Tong, H. Huang, Q. Jia, J. Liu, W. Li, H. Yu, Y. He, L. Ma, X. Wang, M. Li, T. Yang, W. Huang, C. Zhang, M. Yao, Y. Zhang, Z. Xu, S. Guan, Y. Zheng, Bioact. Mater. 22, 180 (2023) |
[49] |
M. Bornapour, N. Muja, D. Shum-Tim, M. Cerruti, M. Pekguleryuz, Acta Biomater. 9, 5319 (2013)
DOI PMID |
[50] | M. Ascencio, M. Pekguleryuz, S. Omanovic, Corros. Sci. 87, 489 (2014) |
[51] | H. Pan, K. Pang, F. Cui, F. Ge, C. Man, X. Wang, Z. Cui, Corros. Sci. 157, 420 (2019) |
[52] | L. Han, Z. Zhang, J. Dai, X. Li, J. Bai, Z. Huang, C. Guo, F. Xue, C. Chu, J. Magnes. Alloy. 11, 1043 (2023) |
[53] | H. Delavar, A.J. Mostahsan, H. Ibrahim, J. Magnes. Alloy. 11, 1125 (2023) |
[54] |
D. Mei, C. Wang, S.V. Lamaka, M.L. Zheludkevich, J. Magnes. Alloy. 9, 805 (2021)
DOI |
[55] |
H. Azzeddine, A. Hanna, A. Dakhouche, B. Luthringer-Feyerabend, J. Magnes. Alloy. 9, 581 (2021)
DOI |
[56] | S. Jafari, R.K.S. Raman, C.H.J. Davies, J. Hofstetter, P.J. Uggowitzer, J.F. Löffler, J. Mech. Behav. Biomed. Mater. 65, 634 (2017) |
[57] | M. Linderov, E. Vasilev, D. Merson, M. Markushev, A. Vinogradov, Metals 8, 20 (2017) |
[1] | Lingyu Zhao, Wei Zhu, Chao Zhang, Yunchang Xin, Changjian Yan, Yao Cheng, Zhaoyang Jin. Detwinning and Anneal-Hardening Behaviors of Pre-Twinned AZ31 Alloys under Cryogenic Loading [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(9): 1551-1563. |
[2] | Xi-Zhao Shi, Zhong-Yu Cui, Jie Li, Bing-Chen Hu, Yi-Qiang An, Xin Wang, Hong-Zhi Cui. Atmospheric Corrosion of AZ31B Magnesium Alloy in the Antarctic Low-Temperature Environment [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(9): 1421-1432. |
[3] | Xin Wei, Yupeng Sun, Junhua Dong, Nan Chen, Qiying Ren, Wei Ke. Effects of Aerobic and Anoxic Conditions on the Corrosion Behavior of NiCu Low Alloy Steel in the Simulated Groundwater Solutions [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(5): 745-757. |
[4] | Xin Wei, Junhua Dong, Yupeng Sun, Nan Chen, Qiying Ren, Madhusudan Dhakal, Xiaofang Li, Wei Ke. Influence of Deteriorated Bentonite Sediments on the Corrosion Behavior of NiCu Low Alloy Steel [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(6): 1011-1022. |
[5] | Jun-Xiu Chen, Xiang-Ying Zhu, Li-Li Tan, Ke Yang, Xu-Ping Su. Effects of ECAP Extrusion on the Microstructure, Mechanical Properties and Biodegradability of Mg-2Zn-xGd-0.5Zr Alloys [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 205-216. |
[6] | Jiaqi Hu, Qite Li, Hong Gao. Influence of Twinning Texture on the Corrosion Fatigue Behavior of Extruded Magnesium Alloys [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 65-76. |
[7] | Yi Meng, Jian Sun, Lei-Gang Cao, Yue Yang, Hai-Tao Zhang, Jian-Zhong Cui. Effect of Al on Expansion Behavior of Mg-Al Alloys During Solidification [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(5): 559-565. |
[8] | Bao-Jie Wang, Ji-Yu Luan, Dao-Kui Xu, Jie Sun, Chuan-Qiang Li, En-Hou Han. Research Progress on the Corrosion Behavior of Magnesium-Lithium-Based Alloys: A Review [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(1): 1-9. |
[9] | Okpo O. Ekerenam, Ai-Li Ma, Yu-Gui Zheng, Si-Yu He, Peter C. Okafor. Evolution of the Corrosion Product Film and Its Effect on the Erosion-Corrosion Behavior of Two Commercial 90Cu-10Ni Tubes in Seawater [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(11): 1148-1170. |
[10] | Songle Lu, Wei Liu, Shian Zhang, Xiaolong Qi, Xiaogang Li, Xuemin Wang. Corrosion Performance of Carbon Steel in CO2 Aqueous Environment Containing Silty Sand with Different Sizes [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(11): 1055-1066. |
[11] | Yan-Chun Zhao,Guang-Sheng Huang,Gui-lin Gong,Ting-Zhuang Han,Da-Biao Xia,Fu-Sheng Pan. Improving the Intermittent Discharge Performance of Mg-Air Battery by Using Oxyanion Corrosion Inhibitor as Electrolyte Additive [J]. Acta Metallurgica Sinica (English Letters), 2016, 29(11): 1019-1024. |
[12] | Syeda Ammara,Shahzadi Shamaila,Rehana Sharif,Sheeba Ghani,Nosheen Zafar. Uniform and Homogeneous Growth of Copper Nanoparticles on Electrophoretically Deposited Carbon Nanotubes Electrode for Nonenzymatic Glucose Sensor [J]. Acta Metallurgica Sinica (English Letters), 2016, 29(10): 889-894. |
[13] | Zuo-Yan Ye, Dao-Xin Liu, Xiao-Hua Zhang, Xiao-Ming Zhang, Ming-Xia Lei, Zhi Yang. Corrosion Fatigue Behavior of 7A85 Aluminum Alloy Thick Plate in NaCl Solution [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(8): 1047-1054. |
[14] | B.F. Ding, Y.S. Wu, S.H. Abubakir. CORROSION FATIGUE BEHAVIOR OF STAINLESS STEEL 3RE60 IN 3.5% SODIUM CHLORIDE SOLUTION [J]. Acta Metallurgica Sinica (English Letters), 2002, 15(6): 538-544 . |
[15] | J.H. Xie; Y.S. Wu; J.Q. He; X.Z.Yang and R.Z. Zhu (Department of Surface Science & Corrosion Engineering, University of Science and Technology Beijing,Beijing 100083, China). CORROSION FATIGUE CRACK INITIATION BEHAVIOR OF 316L STAINLESS STEEL IN HANK'S SOLUTION [J]. Acta Metallurgica Sinica (English Letters), 1996, 9(5): 333-337. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||