Acta Metallurgica Sinica (English Letters) ›› 2017, Vol. 30 ›› Issue (11): 1055-1066.DOI: 10.1007/s40195-017-0645-9
Special Issue: 2017腐蚀虚拟专辑; 2017年钢铁材料专辑
• Orginal Article • Previous Articles Next Articles
Songle Lu1,2, Wei Liu1,*(), Shian Zhang1, Xiaolong Qi1, Xiaogang Li1, Xuemin Wang2
Received:
2017-09-07
Revised:
2017-09-07
Online:
2017-11-20
Published:
2018-01-30
Contact:
Liu Wei
Songle Lu, Wei Liu, Shian Zhang, Xiaolong Qi, Xiaogang Li, Xuemin Wang. Corrosion Performance of Carbon Steel in CO2 Aqueous Environment Containing Silty Sand with Different Sizes[J]. Acta Metallurgica Sinica (English Letters), 2017, 30(11): 1055-1066.
Add to citation manager EndNote|Ris|BibTeX
Steel | C | Si | Mn | S | P | Nb | Mo | Ni | Fe |
---|---|---|---|---|---|---|---|---|---|
X70 | 0.055 | 0.20 | 1.52 | <0.0007 | 0.008 | 0.057 | 0.21 | 0.22 | Bal. |
Table 1 Chemical composition of X70 steel (wt%)
Steel | C | Si | Mn | S | P | Nb | Mo | Ni | Fe |
---|---|---|---|---|---|---|---|---|---|
X70 | 0.055 | 0.20 | 1.52 | <0.0007 | 0.008 | 0.057 | 0.21 | 0.22 | Bal. |
Composition | NaCl | Na2CO3 | NaHCO3 | Na2SO4 | MgCl2·6H2O | CaCl2 | KCl |
---|---|---|---|---|---|---|---|
Content | 543.2 | 383.6 | 1022.7 | 7.1 | 73.8 | 49.9 | 1.8 |
Table 2 Chemical composition of the test solution (mg/L)
Composition | NaCl | Na2CO3 | NaHCO3 | Na2SO4 | MgCl2·6H2O | CaCl2 | KCl |
---|---|---|---|---|---|---|---|
Content | 543.2 | 383.6 | 1022.7 | 7.1 | 73.8 | 49.9 | 1.8 |
Fig. 3 Macroscopic surface morphologies of X70 steel in different silty sand conditions after immersion for 168 h: a, b without silty sand; c, d 325 mesh; e, f 1000 mesh; g, h 5000 mesh
Fig. 4 Microscopic surface morphologies and cross-sectional element distributions of the films of X70 steel in different silty sand conditions after immersion for 168 h: a, b without silty sand; c, d 325 mesh; e, f 1000 mesh; g, h 5000 mesh
Condition | Structure | Si | O | Fe | Ca | |
---|---|---|---|---|---|---|
Without silty sand | Film | Point A | - | 73.19 | 23.73 | 3.09 |
325 mesh | Film | Point B | 23.36 | 68.84 | 7.24 | 0.55 |
Point C | 1.32 | 73.69 | 13.22 | 11.77 | ||
1000 mesh | Inner layer | 1.83 | 75.55 | 17.43 | 5.19 | |
Outer layer | Point D | 12.62 | 71.59 | 14.36 | 1.43 | |
5000 mesh | Inner layer | 1.06 | 74.52 | 22.95 | 1.47 | |
Outer layer | Point E | 4.95 | 73.63 | 21.42 | - | |
Point F | 21.57 | 69.56 | 8.79 | 0.08 |
Table 3 EDS analyses on the films of X70 steel after immersion for 168 h (at%)
Condition | Structure | Si | O | Fe | Ca | |
---|---|---|---|---|---|---|
Without silty sand | Film | Point A | - | 73.19 | 23.73 | 3.09 |
325 mesh | Film | Point B | 23.36 | 68.84 | 7.24 | 0.55 |
Point C | 1.32 | 73.69 | 13.22 | 11.77 | ||
1000 mesh | Inner layer | 1.83 | 75.55 | 17.43 | 5.19 | |
Outer layer | Point D | 12.62 | 71.59 | 14.36 | 1.43 | |
5000 mesh | Inner layer | 1.06 | 74.52 | 22.95 | 1.47 | |
Outer layer | Point E | 4.95 | 73.63 | 21.42 | - | |
Point F | 21.57 | 69.56 | 8.79 | 0.08 |
Condition | E corr versus SCE (mV) | i corr (A cm-2) | b a (mV) | b c (mV) |
---|---|---|---|---|
Without silty sand | -739 | 7.341 × 10-6 | 37.46 | 60.12 |
325 mesh | -737 | 1.437 × 10-6 | 52.66 | 61.60 |
1000 mesh | -734 | 3.184 × 10-6 | 57.33 | 61.39 |
5000 mesh | -734 | 1.862 × 10-6 | 61.31 | 64.31 |
Table 4 Electrochemical parameters from potentiodynamic polarization curves after 168 h
Condition | E corr versus SCE (mV) | i corr (A cm-2) | b a (mV) | b c (mV) |
---|---|---|---|---|
Without silty sand | -739 | 7.341 × 10-6 | 37.46 | 60.12 |
325 mesh | -737 | 1.437 × 10-6 | 52.66 | 61.60 |
1000 mesh | -734 | 3.184 × 10-6 | 57.33 | 61.39 |
5000 mesh | -734 | 1.862 × 10-6 | 61.31 | 64.31 |
Condition | R s (Ω cm2) | Q dl (Ω-1 sn cm-2) | Q dl-n | R ct (Ω cm2) |
---|---|---|---|---|
Without silty sand | 16.99 | 3.111 × 10-3 | 0.8683 | 1458 |
325 mesh | 14.17 | 6.184 × 10-4 | 0.7690 | 3944 |
1000 mesh | 12.97 | 8.044 × 10-4 | 0.8656 | 2208 |
5000 mesh | 16.02 | 5.535 × 10-4 | 0.7966 | 2675 |
Table 5 Electrochemical impedance parameters fitted from EIS data
Condition | R s (Ω cm2) | Q dl (Ω-1 sn cm-2) | Q dl-n | R ct (Ω cm2) |
---|---|---|---|---|
Without silty sand | 16.99 | 3.111 × 10-3 | 0.8683 | 1458 |
325 mesh | 14.17 | 6.184 × 10-4 | 0.7690 | 3944 |
1000 mesh | 12.97 | 8.044 × 10-4 | 0.8656 | 2208 |
5000 mesh | 16.02 | 5.535 × 10-4 | 0.7966 | 2675 |
Condition | Pore volume (cm3/g) | Average pore diameter (nm) |
---|---|---|
325 mesh | 3.966 × 10-3 | 12.79 |
1000 mesh | 4.627 × 10-3 | 12.91 |
5000 mesh | 6.026 × 10-3 | 13.22 |
Table 6 Pore volume and diameter of the adsorption layers of silty sand with different sizes
Condition | Pore volume (cm3/g) | Average pore diameter (nm) |
---|---|---|
325 mesh | 3.966 × 10-3 | 12.79 |
1000 mesh | 4.627 × 10-3 | 12.91 |
5000 mesh | 6.026 × 10-3 | 13.22 |
Condition | E corr versus SCE (mV) | i corr (A cm-2) | b a (mV) | b c (mV) |
---|---|---|---|---|
Without silty sand | -747 | 9.499 × 10-4 | 75.19 | 117.62 |
325 mesh | -738 | 1.841 × 10-4 | 73.73 | 92.19 |
1000 mesh | -744 | 5.045 × 10-4 | 79.28 | 101.27 |
5000 mesh | -751 | 6.095 × 10-4 | 77.90 | 106.12 |
Table 7 Electrochemical parameters from potentiodynamic polarization curves after 0.5 h
Condition | E corr versus SCE (mV) | i corr (A cm-2) | b a (mV) | b c (mV) |
---|---|---|---|---|
Without silty sand | -747 | 9.499 × 10-4 | 75.19 | 117.62 |
325 mesh | -738 | 1.841 × 10-4 | 73.73 | 92.19 |
1000 mesh | -744 | 5.045 × 10-4 | 79.28 | 101.27 |
5000 mesh | -751 | 6.095 × 10-4 | 77.90 | 106.12 |
Condition | Slope | Intercept | C | Wm | Special surface area (m2/g) |
---|---|---|---|---|---|
325 mesh | 2732.34 | 74.34 | 37.75 | 3.56 × 10-4 | 1.241 |
1000 mesh | 2668.06 | 77.10 | 35.61 | 3.64 × 10-4 | 1.269 |
5000 mesh | 1884.96 | 25.11 | 76.08 | 5.24 × 10-4 | 1.823 |
Table 8 Special surface area of the adsorption layers of silty sand with different sizes
Condition | Slope | Intercept | C | Wm | Special surface area (m2/g) |
---|---|---|---|---|---|
325 mesh | 2732.34 | 74.34 | 37.75 | 3.56 × 10-4 | 1.241 |
1000 mesh | 2668.06 | 77.10 | 35.61 | 3.64 × 10-4 | 1.269 |
5000 mesh | 1884.96 | 25.11 | 76.08 | 5.24 × 10-4 | 1.823 |
Fig. 11 Schematics of inhibition mechanism of the films produced on carbon steel surface in different silty sand conditions: a 325 mesh; b 1000 mesh; c 5000 mesh
|
[1] | Yu-Wei Liu, Jian Zhang, Xiao Lu, Miao-Ran Liu, Zhen-Yao Wang. Effect of Metal Cations on Corrosion Behavior and Surface Structure of Carbon Steel in Chloride Ion Atmosphere [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1302-1310. |
[2] | Hongduo Wang, Kuaishe Wang, Wen Wang, Yongxin Lu, Pai Peng, Peng Han, Ke Qiao, Zhihao Liu, Lei Wang. Microstructure and Mechanical Properties of Low-Carbon Q235 Steel Welded Using Friction Stir Welding [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(11): 1556-1570. |
[3] | Miao-Ran Liu, Xiao Lu, Qi Yin, Chen Pan, Chuan Wang, Zhen-Yao Wang. Effect of Acidified Aerosols on Initial Corrosion Behavior of Q235 Carbon Steel [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(8): 995-1006. |
[4] | Yanhong Yan, Hongwei Shi, Jun Wang, Fuchun Liu, En-Hou Han. Corrosion Inhibition of Galvanized Steel in NaCI Solution by Tolytriazole [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(4): 471-480. |
[5] | Canshuai Liu, Jianqiu Wang, Zhiming Zhang, En-Hou Han, Wei Liu, Dong Liang, Zhongtian Yang. Characterization of Corrosion Behavior of Irradiated X65 Low Carbon Steel in Aerobic and Unsaturated Gaomiaozi Bentonite [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(4): 506-516. |
[6] | M. Saleem Khan, Dake Xu, Dan Liu, Yassir Lekbach, Ke Yang, Chunguang Yang. Corrosion Inhibition of X80 Steel in Simulated Marine Environment with Marinobacter aquaeolei [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(11): 1373-1384. |
[7] | Bao-Jie Wang, Ji-Yu Luan, Dao-Kui Xu, Jie Sun, Chuan-Qiang Li, En-Hou Han. Research Progress on the Corrosion Behavior of Magnesium-Lithium-Based Alloys: A Review [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(1): 1-9. |
[8] | Erfan Abbasi, Quanshun Luo, Dave Owens. Microstructural Characteristics and Mechanical Properties of Low-Alloy, Medium-Carbon Steels After Multiple Tempering [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(1): 74-88. |
[9] | Jun-Yang Gao, Xue-Bing Liu, Hai-Fei Zhou, Xin-Fang Zhang. Modification of Corrosion Resistance of the Plain Carbon Steels by Pulsed Electric Current [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(12): 1233-1239. |
[10] | Okpo O. Ekerenam, Ai-Li Ma, Yu-Gui Zheng, Si-Yu He, Peter C. Okafor. Evolution of the Corrosion Product Film and Its Effect on the Erosion-Corrosion Behavior of Two Commercial 90Cu-10Ni Tubes in Seawater [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(11): 1148-1170. |
[11] | Huan-Huan Wang, Du Min ?. Corrosion Behavior of a Low-Carbon Steel in Simulated Marine Splash Zone [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(6): 585-593. |
[12] | Il-Cho Park,Seong-Jong Kim. Electrochemical Characteristics in Seawater for Cold Thermal Spray-Coated Al-Mg Alloy Layer [J]. Acta Metallurgica Sinica (English Letters), 2016, 29(8): 727-734. |
[13] | Yousef Mazaheri, Ahmad Kermanpur, Abbas Najafizadeh, Navid Saeidi. Development of a New Ultrafine/Nano Ferrite-Carbide Microstructure by Thermomechanical Processing [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(2): 249-253. |
[14] | Liangshan QU, Cuiwei DU, Xiaogang LI, Jianlong ZHOU1. Spatial variability of soil resistivity and rational sampling for corrosion assessment of carbon steel in Daqing area [J]. Acta Metallurgica Sinica (English Letters), 2010, 23(5): 396-400. |
[15] | Haiqi YU,Miaoyong ZHU. Effect of electromagnetic stirring in mold on the macroscopic quality of high carbon steel billet [J]. Acta Metallurgica Sinica (English Letters), 2009, 22(6): 461-467. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||