Acta Metallurgica Sinica (English Letters) ›› 2021, Vol. 34 ›› Issue (2): 205-216.DOI: 10.1007/s40195-020-01136-7
Previous Articles Next Articles
Jun-Xiu Chen1,2,3, Xiang-Ying Zhu1,2,3, Li-Li Tan4(), Ke Yang4, Xu-Ping Su1,2,3(
)
Received:
2020-05-08
Revised:
2020-07-05
Accepted:
2020-07-11
Online:
2021-02-10
Published:
2021-02-09
Contact:
Li-Li Tan,Xu-Ping Su
Jun-Xiu Chen, Xiang-Ying Zhu, Li-Li Tan, Ke Yang, Xu-Ping Su. Effects of ECAP Extrusion on the Microstructure, Mechanical Properties and Biodegradability of Mg-2Zn-xGd-0.5Zr Alloys[J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 205-216.
Add to citation manager EndNote|Ris|BibTeX
Alloys | Actual composition | |||
---|---|---|---|---|
Zn (wt%) | Gd (wt%) | Zr (wt%) | Mg | |
Mg-2Zn-0.5Zr (0Gd) | 2.22 | - | 0.40 | Bal. |
Mg-2Zn-0.5Gd-0.5Zr (0.5Gd) | 2.00 | 0.53 | 0.48 | Bal. |
Mg-2Zn-1Gd-0.5Zr (1Gd) | 2.07 | 0.95 | 0.48 | Bal. |
Mg-2Zn-2Gd-0.5Zr (2Gd) | 2.24 | 1.90 | 0.47 | Bal. |
Table 1 Chemical compositions of Mg-Zn-xGd-Zr alloys
Alloys | Actual composition | |||
---|---|---|---|---|
Zn (wt%) | Gd (wt%) | Zr (wt%) | Mg | |
Mg-2Zn-0.5Zr (0Gd) | 2.22 | - | 0.40 | Bal. |
Mg-2Zn-0.5Gd-0.5Zr (0.5Gd) | 2.00 | 0.53 | 0.48 | Bal. |
Mg-2Zn-1Gd-0.5Zr (1Gd) | 2.07 | 0.95 | 0.48 | Bal. |
Mg-2Zn-2Gd-0.5Zr (2Gd) | 2.24 | 1.90 | 0.47 | Bal. |
Fig. 7 Mechanical properties of Mg-2Zn-xGd-0.5Zr alloys: a UTS, YS and EL of the alloys after two passes extrusion, b UTS, YS and EL of the alloys after four passes extrusion, c hardness of alloys after four passes extrusion
Fig. 10 pH change of Hank’s solution at different immersion time for Mg-2Zn-xGd-0.5Zr alloys after extrusion: a as-cast, b one pass extrusion, c two passes extrusion, d four passes extrusion
Fig. 13 Potentiodynamic polarization curves of the alloys with different extrusion passes in Hank’s solution: a as-cast, b one pass, c two passes, d four passes
Alloys | As-cast | One pass | Two passes | Four passes | ||||
---|---|---|---|---|---|---|---|---|
Ecorr (V) | icorr (A cm-2) | Ecorr (V) | icorr (A cm-2) | Ecorr (V) | icorr (A cm-2) | Ecorr (V) | icorr (A cm-2) | |
0Gd | - 1.57 ± 0.03 | 20.22 ± 1.53 | - 1.51 ± 0.02 | 14.62 ± 0.83 | - 1.55 ± 0.04 | 10.52 ± 0.30 | - 1.50 ± 0.01 | 14.84 ± 0.18 |
0.5Gd | - 1.55 ± 0.01 | 18.28 ± 3.05 | - 1.52 ± 0.02 | 13.41 ± 2.47 | - 1.48 ± 0.01 | 10.30 ± 2.34 | - 1.51 ± 0.04 | 12.40 ± 2.23 |
1Gd | - 1.60 ± 0.03 | 10.38 ± 1.01 | - 1.49 ± 0.01 | 10.26 ± 1.19 | - 1.54 ± 0.01 | 9.50 ± 1.03 | - 1.50 ± 0.03 | 10.31 ± 0.65 |
2Gd | - 1.61 ± 0.02 | 25.88 ± 2.12 | - 1.47 ± 0.03 | 18.98 ± 2.39 | - 1.52 ± 0.03 | 10.93 ± 1.71 | - 1.51 ± 0.02 | 14.41 ± 1.02 |
Table 2 Tafel fitting results based on potentiodynamic polarizations in Hank’s solution
Alloys | As-cast | One pass | Two passes | Four passes | ||||
---|---|---|---|---|---|---|---|---|
Ecorr (V) | icorr (A cm-2) | Ecorr (V) | icorr (A cm-2) | Ecorr (V) | icorr (A cm-2) | Ecorr (V) | icorr (A cm-2) | |
0Gd | - 1.57 ± 0.03 | 20.22 ± 1.53 | - 1.51 ± 0.02 | 14.62 ± 0.83 | - 1.55 ± 0.04 | 10.52 ± 0.30 | - 1.50 ± 0.01 | 14.84 ± 0.18 |
0.5Gd | - 1.55 ± 0.01 | 18.28 ± 3.05 | - 1.52 ± 0.02 | 13.41 ± 2.47 | - 1.48 ± 0.01 | 10.30 ± 2.34 | - 1.51 ± 0.04 | 12.40 ± 2.23 |
1Gd | - 1.60 ± 0.03 | 10.38 ± 1.01 | - 1.49 ± 0.01 | 10.26 ± 1.19 | - 1.54 ± 0.01 | 9.50 ± 1.03 | - 1.50 ± 0.03 | 10.31 ± 0.65 |
2Gd | - 1.61 ± 0.02 | 25.88 ± 2.12 | - 1.47 ± 0.03 | 18.98 ± 2.39 | - 1.52 ± 0.03 | 10.93 ± 1.71 | - 1.51 ± 0.02 | 14.41 ± 1.02 |
Fig. 14 Impedance curves of the Mg-2Zn-xGd-Zr alloys after four passes extrusion: a Nyquist plots, b Bode plots of log |Z| versus log f, c Bode plots of phase angle, d equivalent circuit of the alloys in Hank’s solution
Specimens | Rs (Ω cm2) | CPE1 | R1 (Ω cm2) | CPE2 | R2 (Ω cm2) | R3 (Ω cm2) | L (H cm-2) | ||
---|---|---|---|---|---|---|---|---|---|
Y01 (S sn cm-2) | n1 | Y02 (S sn cm-2) | n2 | ||||||
0Gd | 19.76 | 1.0 × 10-5 | 0.60 | 34.02 | 28.87 × 10-6 | 0.80 | 1.59 × 103 | 8.35 × 103 | 2.63 × 103 |
0.5Gd | 13.04 | 6.76 × 10-5 | 0.50 | 134.70 | 12.13 × 10-6 | 0.90 | 1.64 × 103 | 9.54 × 103 | 0.69 × 103 |
1Gd | 16.91 | 2.40 × 10-5 | 0.70 | 73.30 | 12.27 × 10-6 | 0.90 | 1.91 × 103 | 7.56 × 103 | 1.32 × 103 |
2Gd | 16.31 | 4.13 × 10-5 | 0.60 | 52.90 | 21.32 × 10-6 | 0.80 | 1.70 × 103 | 7.56 × 103 | 0.88 × 103 |
Table 3 Fitting results of Mg-2Zn-xGd-Zr alloys immersed in Hank’s solution after four passes extrusion
Specimens | Rs (Ω cm2) | CPE1 | R1 (Ω cm2) | CPE2 | R2 (Ω cm2) | R3 (Ω cm2) | L (H cm-2) | ||
---|---|---|---|---|---|---|---|---|---|
Y01 (S sn cm-2) | n1 | Y02 (S sn cm-2) | n2 | ||||||
0Gd | 19.76 | 1.0 × 10-5 | 0.60 | 34.02 | 28.87 × 10-6 | 0.80 | 1.59 × 103 | 8.35 × 103 | 2.63 × 103 |
0.5Gd | 13.04 | 6.76 × 10-5 | 0.50 | 134.70 | 12.13 × 10-6 | 0.90 | 1.64 × 103 | 9.54 × 103 | 0.69 × 103 |
1Gd | 16.91 | 2.40 × 10-5 | 0.70 | 73.30 | 12.27 × 10-6 | 0.90 | 1.91 × 103 | 7.56 × 103 | 1.32 × 103 |
2Gd | 16.31 | 4.13 × 10-5 | 0.60 | 52.90 | 21.32 × 10-6 | 0.80 | 1.70 × 103 | 7.56 × 103 | 0.88 × 103 |
Fig. 15 Schematic illustration of the alloy degradation after extrusion: a large second phases and grain size in the as-cast alloy, b the grain size decreased and the second phases distributed uniformly after two passes extrusion, c the grain size decreased further and many strip-shaped ultra-fine grains formed after four passes extrusion. The corrosion occurred from the ultra-fine grains
[1] | F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg, C.J. Wirth, H. Windhagen, Biomaterials 26, 3557 (2005) |
[2] | D.W. Zhao, S.B. Huang, F.Q. Lu, B.J. Wang, L. Yang, L. Qin, K. Yang, Y.D. Li, W.R. Li, W. Wang, S.M. Tian, X.Z. Zhang, W.B. Gao, Z.P. Wang, Y. Zhang, X.H. Xie, J.L. Wang, J.L. Li, Biomaterials 81, 84 (2016) |
[3] | H. Windhagen, K. Radtke, A. Weizbauer, J. Diekmann, Y. Noll, U. Kreimeyer, R. Schavan, C. Stukenborg-Colsman, H. Waizy, Biomed. Eng. Online 12, 62 (2013) |
[4] |
J. Kang, J.K. Han, H.M. Yang, K.W. Park, H.J. Kang, B.K. Koo, H.S. Kim, Circ. J. 81, 1065(2017)
DOI URL PMID |
[5] | H. Li, X. Feng, Y. Peng, R. Zeng, Nanoscale 12, 7700 (2020) |
[6] | G.L. Song, S.Z. Song, Acta Phys. Chim. Sin. 22, 1222(2006) |
[7] | H. Miao, H. Huang, Y. Shi, H. Zhang, J. Pei, G. Yuan, Corros. Sci. 122, 90(2017) |
[8] | J. Zhang, S. Liu, R. Wu, L. Hou, M. Zhang, J. Magnes. Alloys 6, 277 (2018) |
[9] | H. Liu, H. Huang, J.P. Sun, C. Wang, J. Bai, A.B. Ma, X.H. Chen, Acta Metall Sin. -Engl. Lett. 32, 269(2018) |
[10] |
Y.F. Ding, C.E. Wen, P. Hodgson, Y.C. Li, J. Mater. Chem. B 2, 1912 (2014)
DOI URL PMID |
[11] | J. Chen, L. Tan, X. Yu, K. Yang, J. Mater. Sci. Technol. 35, 503(2018) |
[12] | B. Jiang, Q. Xiang, A. Atrens, J. Song, F. Pan, Corros. Sci. 126, 374(2017) |
[13] |
Y. Feng, S. Zhu, L. Wang, L. Chang, Y. Hou, S. Guan, Bioact. Mater. 3, 225(2018)
URL PMID |
[14] | Y.C. Wan, S.Y. Xu, C.M. Liu, Y.H. Gao, S.N. Jiang, Z.Y. Chen, Mater. Lett. 213, 274(2018) |
[15] |
H.B. Henderson, V. Ramaswamy, A.E. Wilson-Heid, M.S. Kesler, J.B. Allen, M.V. Manuel, J. Mech. Behav. Biomed. Mater. 80, 285(2018)
DOI URL PMID |
[16] |
C.Z. Zhang, S.J. Zhu, L.G. Wang, R.M. Guo, G.C. Yue, S.K. Guan, Mater. Des. 96, 54(2016)
DOI URL |
[17] | H. Liu, H. Huang, C. Wang, J. Sun, J. Bai, F. Xue, A.B. Ma, X.B. Chen, JOM 71, 3314 (2019) |
[18] |
B. Du, Z. Hu, J. Wang, L. Sheng, H. Zhao, Y. Zheng, T. Xi, Bioact. Mater. 5, 219(2020)
DOI URL PMID |
[19] | B.N. Du, Z.P. Xiao, Y.X. Qiao, L. Zheng, B.Y. Yu, D.L. Xu, L.Y. Sheng, J. Alloys Compd. 775, 990(2019) |
[20] | B.R. Sunil, T.S.S. Kumar, U. Chakkingal, V. Nandakumar, M. Doble, V.D. Prasad, M. Raghunath, Mater. Sci. Eng. C 59, 356 (2016) |
[21] | W. Zhang, L. Tan, D. Ni, J. Chen, Y. Zhao, L. Liu, C. Shuai, K. Yang, A. Atrens, M. Zhao, J. Mater. Sci. Technol. 35, 777(2019) |
[22] | Y. Zong, G.Y. Yuan, X.B. Zhang, L. Mao, J.L. Niu, W.J. Ding, Mater. Sci. Eng. B 177, 395 (2012) |
[23] |
D.K. Xu, E.H. Han, Prog. Nat. Sci. 22, 364(2012)
DOI URL |
[24] | S.Q. Yin, Z.Q. Zhang, X. Liu, Q.C. Le, Q. Lan, L. Bao, J.Z. Cui, Mater. Sci. Eng. A 695, 135 (2017) |
[25] |
P. Minarik, R. Kral, J. Cizek, F. Chmelik, Acta Mater. 107, 83(2016)
DOI URL |
[26] |
P. Minárik, R. Král, J. Pešička, S. Daniš, M. Janeček, Mater. Charact. 112, 1(2016)
DOI URL |
[27] | Y. Yoshida, L. Cisar, S. Kamado, Y. Kojima, Mater. Trans. 44, 468(2003) |
[28] | B. Wang, D. Xu, L. Sheng, E. Han, J. Sun, J. Mater. Sci. Technol. 35, 2423(2019) |
[29] | H. Liu, J. Ju, X. Yang, J. Yan, D. Song, J. Jiang, A. Ma, J. Alloys Compd. 704, 509(2017) |
[30] | G.L. Song, A. Atrens, M. Dargusch, Corros. Sci. 41, 249(1999) |
[31] | K.V. Kutniy, I.I. Papirov, M.A. Tikhonovsky, A.I. Pikalov, S.V. Sivtzov, L.A. Pirozhenko, V.S. Shokurov, V.A. Shkuropatenko, Materialwiss. Werkstofftech. 40, 242(2009) |
[32] | R.C. Zeng, K.U. Kainer, C. Blawert, W. Dietzel, J. Alloys Compd. 509, 4462(2011) |
[33] | G.L. Song, JOM 64, 671 (2012) |
[1] | Kai Yan, Huan Liu, Xiaowei Xue, Jing Bai, Honghui Chen, Shuangquan Fang, Jingjing Liu. Enhancing Mechanical Properties of Mg-6Zn Alloy by Deformation-Induced Nanoprecipitation [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 217-226. |
[2] | Quan Wen, Wenya Li, Vivek Patel, Luciano Bergmann, Benjamin Klusemann, Jorge F. dos Santos. Assessing the Bonding Interface Characteristics and Mechanical Properties of Bobbin Tool Friction Stir Welded Dissimilar Aluminum Alloy Joints [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 125-134. |
[3] | Meichen Liang, Hao Zhang, Lifeng Zhang, Peng Xue, Dingrui Ni, Weizhen Wang, Zongyi Ma, Hengqiang Ye, Zhiqing Yang. Evolution of Quasicrystals and Long-Period Stacking Ordered Structures During Severe Plastic Deformation and Mixing of Dissimilar Mg Alloys Upon Friction Stir Welding [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 12-24. |
[4] | He Huang, Huan Liu, Li-Sha Wang, Yu-Hua Li, Solomon-Oshioke Agbedor, Jing Bai, Feng Xue, Jing-Hua Jiang. A High-Strength and Biodegradable Zn-Mg Alloy with Refined Ternary Eutectic Structure Processed by ECAP [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1191-1200. |
[5] | Hui Jiang, Tian-Dang Huang, Chao Su, Hong-Bin Zhang, Kai-Ming Han, Sheng-Xue Qin. Microstructure and Mechanical Behavior of CrFeNi2V0.5Wx (x = 0, 0.25) High-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1117-1123. |
[6] | Hou-Long Liu, Ling-Ling Liu, Ming-Yu Ma, Li-Qing Chen. Influence of Finish Rolling Temperature on Microstructure and Mechanical Properties of a 19Cr1.5Mo0.5 W Ferritic Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 991-1000. |
[7] | P. F. Zhou, D. H. Xiao, T. C. Yuan. Microstructure, Mechanical and Corrosion Properties of AlCoCrFeNi High-Entropy Alloy Prepared by Spark Plasma Sintering [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 937-946. |
[8] | Juan Liu, Yuze Wu, Lin Wang, Hui Wang, Charlie Kong, Alexander Pesin, Alexander P. Zhilyaev, Hailiang Yu. Fabrication and Characterization of High-Bonding-Strength Al/Ti/Al-Laminated Composites via Cryorolling [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(6): 871-880. |
[9] | Li-Mei Liu, Yu-Xiang Lai, Chun-Hui Liu, Jiang-Hua Chen. Optimized Combinatorial Properties of an AlMgSi(Cu) Alloy Achieved by a Mechanical-Thermal Combinatorial Process [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(5): 751-758. |
[10] | Jinwei Yin, Peilong Zhou, Hanqin Liang, Dongxu Yao, Yongfeng Xia, Kaihui Zuo, YuPing Zeng. Microstructure and Mechanical Properties of Cu Matrix Composites Reinforced by TiB2/TiN Ceramic Reinforcements [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(12): 1609-1617. |
[11] | Hao-Yu Yi, Tian Liang, Min Wang, Xiang-Dong Zha, Ying-Che Ma, Kui Liu. Effects of Silicon on the Microstructure and Mechanical Properties of 15-15Ti Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(11): 1583-1590. |
[12] | Wen Wang, Peng Han, Jie Yuan, Pai Peng, Qiang Liu, Fei Qiang, Ke Qiao, Kuai-She Wang. Enhanced Mechanical Properties of Pure Zirconium via Friction Stir Processing [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(1): 147-153. |
[13] | Chao Xiang, Zhi-Ming Zhang, Hua-Meng Fu, En-Hou Han, Jian-Qiu Wang, Hai-Feng Zhang, Guo-Dong Hu. Microstructure, Mechanical Properties, and Corrosion Behavior of MoNbFeCrV, MoNbFeCrTi, and MoNbFeVTi High-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(9): 1053-1064. |
[14] | Jian-Guo Chen, Chen-Xi Liu, Chen Wei, Yong-Chang Liu, Hui-Jun Li. Effects of Isothermal Aging on Microstructure and Mechanical Property of Low-Carbon RAFM Steel [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(9): 1151-1160. |
[15] | Xiao Wang, Fei Lv, Li-Da Shen, Hui-Xin Liang, De-Qiao Xie, Zong-Jun Tian. Influence of Island Scanning Strategy on Microstructures and Mechanical Properties of Direct Laser-Deposited Ti-6Al-4V Structures [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(9): 1173-1180. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||