Please wait a minute...
Acta Metallurgica Sinica (English Letters)  2019, Vol. 32 Issue (12): 1521-1529    DOI: 10.1007/s40195-019-00965-5
Orginal Article Current Issue | Archive | Adv Search |
Torsional Fatigue Cracking and Fracture Behaviors of Cold-Drawn Copper: Effects of Microstructure and Axial Stress
Rong-Hua Li1(), Peng Zhang2(), Zhe-Feng Zhang2
1 School of Mechanical Engineering, Liaoning Shihua University, Fushun 113001, China
2 Laboratory of Fatigue and Fracture for Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Download:  HTML  PDF(2312KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The fatigue cracking and fracture behavior of cold-drawn copper subjected to cyclic torsional loading were investigated in this study. It was found that with increasing stress amplitude, the fracture mode of cold-drawn copper gradually changes from a shear fracture on transverse maximum shear stress plane to a mixed shear mode on both transverse and longitudinal shear planes and finally turns to the shear fracture on multiple longitudinal shear planes. Combining the cracking morphology and the relationship between torsional fatigue cracking and the grain boundaries, the fracture mechanism of cold-drawn copper under cyclic torsional loading was analyzed and proposed by considering the effects of the microstructure and axial stress caused by torsion. Because of the promotion of the grain boundary distribution on longitudinal crack propagation and the inhibition of axial stress on transverse crack grown, the tendency of crack propagation along the longitudinal direction increases with increasing stress levels.

Key words:  Torsion      Fatigue behavior      Crack propagation      Fracture mechanisms      Axial stress      Copper     
Received:  03 July 2019     

Cite this article: 

Rong-Hua Li, Peng Zhang, Zhe-Feng Zhang. Torsional Fatigue Cracking and Fracture Behaviors of Cold-Drawn Copper: Effects of Microstructure and Axial Stress. Acta Metallurgica Sinica (English Letters), 2019, 32(12): 1521-1529.

URL: 

https://www.amse.org.cn/EN/10.1007/s40195-019-00965-5     OR     https://www.amse.org.cn/EN/Y2019/V32/I12/1521

Fig. 1  a Microstructure, b specimen geometry of cold-drawn copper used to fatigue test
Tension Torsion
Yield stress, σs (MPa) Uniform elongation, εu (%) Strain to fracture, εf (%) Yield stress, τs (MPa)
260?±?1 17.6?±?1.93 41.7?±?2.52 101?±?1
Table 1  Tensile and torsional properties of cold-drawn copper
Fig. 2  Surface damage morphologies near the fracture surfaces of cold-drawn copper after torsional fatigue: a, b 75 MPa, c, d 90 MPa, e, f 100 MPa, g, h 150 MPa
Fig. 3  Fracture morphologies of cold-drawn copper after torsional fatigue tests: a-c 75 MPa, d 90 MPa, e 100 MPa, f 150 MPa. b, c show the typical morphology of propagation zone and rapid fracture zone, respectively; the arrow in d denotes propagation direction of longitudinal cracks
Fig. 4  Relationship between torsional fatigue crack and grain boundary of cold-drawn copper at the stress amplitude of 100 MPa: a, b transverse crack, c longitudinal crack, d microstructure on the longitudinal section of specimen
Fig. 5  Relationship between axial stress and time when cold-drawn copper specimen was cycled to half of its total life at different stress amplitudes: a 75 MPa, b 90 MPa, c 100 MPa, d 150 MPa
Fig. 6  Summary of crack propagation and fracture morphologies of cold-drawn copper under cyclic torsional loading: a 75 MPa, b 90 MPa, c 100 MPa, d 150 MPa. (The line segments with arrows denote the width of concentrated damage areas)
[1] E.K. Tschegg, Theor. Appl. Fract. Mec. 3, 157(1985)
[2] A. Fatemi, R. Molaei, S. Sharifimehr, N. Shamsaei, N. Phan, Int. J. Fatigue 99, 187 (2017)
[3] R.F. Martins, L. Ferreira, L. Reis, P. Chambel, Theor. Appl. Fract. Mec. 85, 56(2016)
[4] Z.Z. Hu, Y.S. Wu, H.P. Cai, L.H. Ma, Acta Metall. Sin. (Engl. lett.) 4, 123 (1991)
[5] R.H. Li, P. Zhang, Z.F. Zhang, Mater. Sci. Eng. A 574, 113 (2013)
[6] C. Makabe, D.F. Socie, T. Sueyoshi, Fatigue Fract. Eng. Mater. Struct. 27, 669(2004)
[7] Q. Wang, Q. Sun, L. Xiao, J. Sun, Mater. Sci. Eng. A 649, 359 (2016)
[8] J.Y. Zhang, Q.S. Xiao, X.H. Shi, B.J. Fei, Int. J. Fatigue 67, 173 (2014)
[9] P. Davoli, A. Bernasconi, M. Filippini, S. Foletti, I.V. Papadopoulos, Int. J. Fatigue 25, 471 (2003)
[10] D. McClaflin, A. Fatemi, Int. J. Fatigue 26, 773 (2004)
[11] L. Pallarés-Santasmartasa, J. Albizuria, A. Avilésb, N. Saintierc, J. Merzeauc, Int. J. Fatigue 113, 54 (2018)
[12] B.M. Schonbauer, K. Yanase, M. Endo, Int. J. Fatigue 100, 540 (2017)
[13] H.Q. Xue, C. Bathias, Eng. Fract. Mech. 77, 1866(2010)
[14] W. Kim, C. Laird, Acta Metall. 26, 789(1978)
[15] P.J.E. Forsyth, Acta Metall. 11, 703(1963)
[16] E. Bruder, C. Gangaraju, R. Lapovok, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 711, 650(2018)
[17] M.J. Adinoyi, N. Merah, J. Albinmousa, Int. J. Fatigue 117, 101 (2018)
[18] J. Albinmousa, H. Jahed, S. Lambert, Int. J. Fatigue 33, 1403 (2011)
[19] G. Dieter (ed.), Mechanical Metallurgy (McGraw-Hill Book Company, London, 1988)
[20] Z.F. Zhang, Z.G. Wang, Acta Mater. 51, 347(2003)
[21] R.H. Li, Z.J. Zhang, P. Zhang, Z.F. Zhang, Acta Mater. 61, 5857(2013)
[22] A. Nadai (ed.), Theory of Folw and Fracture of Solids (McGraw-Hill Book Company, New York, 1950)
[23] E.K. Tschegg, J. Mater. Sci. 18, 1604(1983)
[24] Z.F. Zhang, Z.G. Wang, Prog. Mater Sci. 53, 1025(2008)
[25] V. Doquet, Fatigue Fract. Eng. Mater. Struct. 20, 227(1997)
[1] Tao Xiao, Xiao-Fei Sheng, Qian Lei, Jia-Lun Zhu, Sheng-Yao Li, Ze-Ru Liu, Zhou Li. Effect of Magnesium on Microstructure Refinements and Properties Enhancements in High-Strength CuNiSi Alloys[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(3): 375-384.
[2] Ke Xu, Tao Fang, Longfei Zhao, Haichao Cui, Fenggui Lu. Effect of Trace Element on Microstructure and Fracture Toughness of Weld Metal[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(3): 425-436.
[3] Nan Xu, Ruo-Nan Feng, Wen-Feng Guo, Qi-Ning Song, Ye-Feng Bao. Effect of Zener-Hollomon Parameter on Microstructure and Mechanical Properties of Copper Subjected to Friction Stir Welding[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(2): 319-326.
[4] Xu Kong, Yu-Min Wang, Xu Zhang, Qing Yang, Guo-Xing Zhang, Li-Na Yang, Rui Yang. Monitoring Damage Evolution in a Titanium Matrix Composite Shaft Under Torsion Loading Using Acoustic Emission[J]. Acta Metallurgica Sinica (English Letters), 2019, 32(10): 1244-1252.
[5] Abdollah Saboori, Matteo Pavese, Claudio Badini, Paolo Fino. A Novel Cu-GNPs Nanocomposite with Improved Thermal and Mechanical Properties[J]. Acta Metallurgica Sinica (English Letters), 2018, 31(2): 148-152.
[6] Okpo O. Ekerenam, Ai-Li Ma, Yu-Gui Zheng, Si-Yu He, Peter C. Okafor. Evolution of the Corrosion Product Film and Its Effect on the Erosion-Corrosion Behavior of Two Commercial 90Cu-10Ni Tubes in Seawater[J]. Acta Metallurgica Sinica (English Letters), 2018, 31(11): 1148-1170.
[7] Farhad Bakhtiari Argesi, Ali Shamsipur, Seyyed Ehsan Mirsalehi. Dissimilar Joining of Pure Copper to Aluminum Alloy via Friction Stir Welding[J]. Acta Metallurgica Sinica (English Letters), 2018, 31(11): 1183-1196.
[8] Wei Wang, Zong-Ning Chen, En-Yu Guo, Hui-Jun Kang, Yi Liu, Cun-Lei Zou, Ren-Geng Li, Guo-Mao Yin, Tong-Min Wang. Influence of Cryorolling on the Precipitation of Cu-Ni-Si Alloys: An In Situ X-ray Diffraction Study[J]. Acta Metallurgica Sinica (English Letters), 2018, 31(10): 1089-1097.
[9] Noritake Hiyoshi. Crack Initiation and Propagation Evaluation for Sn-5Sb Solder Under Low-Cycle Fatigue[J]. Acta Metallurgica Sinica (English Letters), 2017, 30(9): 851-856.
[10] Qi-Ning Song, Nan Xu Ye-Feng, BaoEmail author, Yong-Feng Jiang, Wei Gu, Yu-Gui Zheng, Yan-Xin Qiao. Corrosion and Cavitation Erosion Behaviors of Two Marine Propeller Materials in Clean and Sulfide-Polluted 3.5% NaCl Solutions[J]. Acta Metallurgica Sinica (English Letters), 2017, 30(8): 712-720.
[11] Meng Wang, Zhen-Yu Liu, Cheng-Gang Li. Correlations of Ni Contents, Formation of Reversed Austenite and Toughness for Ni-Containing Cryogenic Steels[J]. Acta Metallurgica Sinica (English Letters), 2017, 30(3): 238-237.
[12] Hamed Asgharzadeh, Hamid Faraghi, Hyoung Seop Kim. Fabrication of Fullerene-Reinforced Aluminum Matrix Nanocomposites[J]. Acta Metallurgica Sinica (English Letters), 2017, 30(10): 973-982.
[13] A. Alshareef,K. Laird,R. B. M. Cross. Chemical Synthesis of Copper Nanospheres and Nanocubes and Their Antibacterial Activity Against Escherichia coli and Enterococcus sp.[J]. Acta Metallurgica Sinica (English Letters), 2017, 30(1): 29-35.
[14] Shan-Quan Deng, Andy Godfrey, Wei Liu. Analysis of Stored Energy in Cold-Rolled Copper Using Bulk and Microstructure-Based Techniques[J]. Acta Metallurgica Sinica (English Letters), 2016, 29(4): 313-319.
[15] Yi-Bin Ren,Yu-Xia Sun,Ke Yang. Study on Micron Porous Copper Prepared by Physical Vacuum Dealloying[J]. Acta Metallurgica Sinica (English Letters), 2016, 29(12): 1144-1147.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
Home
About AMSE
Privacy Statement
Terms & Conditions
Editorial Office: Acta Metallurgica Sinica(English Letters), 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-024-83978879
E-mail:ams@imr.ac.cn

Copyright © 2016 AMSE, All Rights Reserved.