Acta Metallurgica Sinica (English Letters) ›› 2022, Vol. 35 ›› Issue (12): 2027-2046.DOI: 10.1007/s40195-022-01436-0
Previous Articles Next Articles
J.X. Tang1, L. Shi1(), C.S. Wu1, M.X. Wu2, S. Gao3
Received:
2022-05-02
Revised:
2022-05-23
Accepted:
2022-05-24
Online:
2022-12-10
Published:
2022-07-04
Contact:
L. Shi
About author:
L. Shi, lei.shi@sdu.edu.cnJ.X. Tang, L. Shi, C.S. Wu, M.X. Wu, S. Gao. Microstructure and Mechanical Properties of Dissimilar Double-Side Friction Stir Welds Between Medium-Thick 6061-T6 Aluminum and Pure Copper Plates[J]. Acta Metallurgica Sinica (English Letters), 2022, 35(12): 2027-2046.
Add to citation manager EndNote|Ris|BibTeX
Materials | Al | Cu | Mg | Si | Fe | Zn | Mn | Cr |
---|---|---|---|---|---|---|---|---|
6061-T6 aluminum | Bal. | 0.275 | 0.882 | 0.582 | 0.536 | 0.572 | 0.166 | 0.083 |
Pure copper | 0.005 | Bal. | - | 0.009 | 0.005 | 0.036 | - | 0.002 |
Table 1 Chemical compositions of 6061-T6 aluminum and pure copper (wt%)
Materials | Al | Cu | Mg | Si | Fe | Zn | Mn | Cr |
---|---|---|---|---|---|---|---|---|
6061-T6 aluminum | Bal. | 0.275 | 0.882 | 0.582 | 0.536 | 0.572 | 0.166 | 0.083 |
Pure copper | 0.005 | Bal. | - | 0.009 | 0.005 | 0.036 | - | 0.002 |
Materials | Ultimate tensile strength (MPa) | Elongation (%) | Hardness (HV) |
---|---|---|---|
6061-T6 aluminum | 368 | 13 | 115 |
Pure copper | 245 | 14 | 98 |
Table 2 Mechanical properties of base metals
Materials | Ultimate tensile strength (MPa) | Elongation (%) | Hardness (HV) |
---|---|---|---|
6061-T6 aluminum | 368 | 13 | 115 |
Pure copper | 245 | 14 | 98 |
Fig. 2 a Schematic diagram of selection position of the tensile specimens and metallographic samples in Al/Cu welds, b dimension of tensile specimen, c schematic drawing of cross-section metallographic in Al/Cu weld
Fig. 4 Macrographs of the cross section of the Al/Cu joints at different welding speeds: a 90 mm/min, b 180 mm/min, c 300 mm/min, d 400 mm/min, e 500 mm/min
Fig. 6 a Microstructure of Al/Cu joints at the welding speed of 180 mm/min at region d in Fig. 5a; b Al/Cu strips structures; c Cu particles; d Cu bulks; e-j corresponding EDS mapping of regions b-d
Point number | Al (at.%) | Cu (at.%) | Possible phases |
---|---|---|---|
1 | 53.8 | 46.2 | AlCu |
2 | 66.1 | 33.9 | Al2Cu |
3 | 76.3 | 23.7 | Al2Cu |
4 | 65.4 | 34.6 | Al2Cu |
5 | 73.4 | 26.6 | Al2Cu |
6 | 65.1 | 34.9 | Al2Cu |
7 | 56.8 | 43.2 | AlCu |
8 | 50.6 | 49.4 | AlCu |
9 | 74.7 | 25.3 | Al2Cu |
10 | 31.4 | 68.6 | Al4Cu9 |
11 | 58 | 42 | Al2Cu |
12 | 66.3 | 33.7 | Al2Cu |
13 | 55.6 | 44.4 | AlCu |
14 | 65.7 | 34.3 | Al2Cu |
15 | 70.9 | 29.1 | Al2Cu |
16 | 48.5 | 51.5 | AlCu |
17 | 66.8 | 33.2 | Al2Cu |
18 | 62.5 | 37.5 | Al2Cu |
19 | 59.9 | 40.1 | Al2Cu |
20 | 51.6 | 48.4 | AlCu |
21 | 66.7 | 33.3 | Al2Cu |
22 | 69.2 | 30.8 | Al2Cu |
Table 3 EDS point scanning results are marked in Figs. 6 and 7
Point number | Al (at.%) | Cu (at.%) | Possible phases |
---|---|---|---|
1 | 53.8 | 46.2 | AlCu |
2 | 66.1 | 33.9 | Al2Cu |
3 | 76.3 | 23.7 | Al2Cu |
4 | 65.4 | 34.6 | Al2Cu |
5 | 73.4 | 26.6 | Al2Cu |
6 | 65.1 | 34.9 | Al2Cu |
7 | 56.8 | 43.2 | AlCu |
8 | 50.6 | 49.4 | AlCu |
9 | 74.7 | 25.3 | Al2Cu |
10 | 31.4 | 68.6 | Al4Cu9 |
11 | 58 | 42 | Al2Cu |
12 | 66.3 | 33.7 | Al2Cu |
13 | 55.6 | 44.4 | AlCu |
14 | 65.7 | 34.3 | Al2Cu |
15 | 70.9 | 29.1 | Al2Cu |
16 | 48.5 | 51.5 | AlCu |
17 | 66.8 | 33.2 | Al2Cu |
18 | 62.5 | 37.5 | Al2Cu |
19 | 59.9 | 40.1 | Al2Cu |
20 | 51.6 | 48.4 | AlCu |
21 | 66.7 | 33.3 | Al2Cu |
22 | 69.2 | 30.8 | Al2Cu |
Fig. 7 Microstructures of Al/Cu joints at the welding speed of 180 mm/min a at region e in Fig. 5a; b at region f in Fig. 5a; e at region g in Fig. 5a; c, d enlarged areas corresponding to the red circles in b; f enlarged area corresponding to the red circle in e
Fig. 8 Microstructures of Al/Cu joints at the welding speed of 400 mm/min: a, c enlarged areas corresponding to the red circle in b; b SEM at region h in Fig. 5a; d-i EDS mapping of a-c regions
Point number | Al (at.%) | Cu (at.%) | Possible phases |
---|---|---|---|
1 | 94.6 | 5.4 | Al(Cu) |
2 | 68.1 | 31.9 | Al2Cu |
3 | 64.9 | 35.1 | Al2Cu |
4 | 27.6 | 72.4 | Al4Cu9 |
5 | 97.5 | 2.5 | Al(Cu) |
6 | 60.8 | 39.2 | Al2Cu |
7 | 52 | 48 | AlCu |
8 | 68.2 | 31.8 | Al2Cu |
9 | 69.8 | 30.2 | Al2Cu |
10 | 58 | 42 | AlCu |
11 | 71.4 | 28.6 | Al2Cu |
12 | 65.8 | 34.2 | Al2Cu |
13 | 78.3 | 21.7 | Al2Cu |
14 | 78.4 | 21.6 | Al2Cu |
15 | 95.5 | 4.5 | Al(Cu) |
16 | 54 | 46 | AlCu |
17 | 50.9 | 49.1 | AlCu |
18 | 67.8 | 32.2 | Al2Cu |
19 | 59.6 | 40.4 | Al2Cu |
Table 4 EDS point scan results for the points marked in Figs. 8 and 9
Point number | Al (at.%) | Cu (at.%) | Possible phases |
---|---|---|---|
1 | 94.6 | 5.4 | Al(Cu) |
2 | 68.1 | 31.9 | Al2Cu |
3 | 64.9 | 35.1 | Al2Cu |
4 | 27.6 | 72.4 | Al4Cu9 |
5 | 97.5 | 2.5 | Al(Cu) |
6 | 60.8 | 39.2 | Al2Cu |
7 | 52 | 48 | AlCu |
8 | 68.2 | 31.8 | Al2Cu |
9 | 69.8 | 30.2 | Al2Cu |
10 | 58 | 42 | AlCu |
11 | 71.4 | 28.6 | Al2Cu |
12 | 65.8 | 34.2 | Al2Cu |
13 | 78.3 | 21.7 | Al2Cu |
14 | 78.4 | 21.6 | Al2Cu |
15 | 95.5 | 4.5 | Al(Cu) |
16 | 54 | 46 | AlCu |
17 | 50.9 | 49.1 | AlCu |
18 | 67.8 | 32.2 | Al2Cu |
19 | 59.6 | 40.4 | Al2Cu |
Fig. 9 a Microstructure of Al/Cu joints at region i in Fig. 5b for the welding speed of 400 mm/min; b magnified area of the red circle in a; c microstructures at region j in Fig. 5b; d magnified area of the red circle in c; e microstructures at region k in Fig. 5b; f EDS mapping of Fig. 9e
Fig. 10 Microstructures of Al/Cu joints at the welding speed of 500 mm/min: a at region m in Fig. 5c; b at region n in Fig. 5c; c-e the magnified area of the red circle in b; f-k corresponding EDS mapping of regions c-e
Fig. 11 Microstructures of the joint for the welding speed of 500 mm/min: a at region o in Fig. 5c; b, c magnified area of the red circle in Fig. 9a; d at region p in Fig. 5c
Point number | Al (at.%) | Cu (at.%) | Possible phases |
---|---|---|---|
1 | 53.2 | 46.8 | AlCu |
2 | 62.2 | 37.8 | Al2Cu |
3 | 78.2 | 21.8 | Al2Cu |
4 | 79.3 | 20.7 | Al2Cu |
5 | 79.9 | 20.1 | Al2Cu |
6 | 69.7 | 30.3 | Al2Cu |
7 | 53.8 | 46.2 | AlCu |
8 | 63 | 37 | Al2Cu |
Table 5 EDS point scanning results for the points marked in Fig. 11
Point number | Al (at.%) | Cu (at.%) | Possible phases |
---|---|---|---|
1 | 53.2 | 46.8 | AlCu |
2 | 62.2 | 37.8 | Al2Cu |
3 | 78.2 | 21.8 | Al2Cu |
4 | 79.3 | 20.7 | Al2Cu |
5 | 79.9 | 20.1 | Al2Cu |
6 | 69.7 | 30.3 | Al2Cu |
7 | 53.8 | 46.2 | AlCu |
8 | 63 | 37 | Al2Cu |
Fig. 12 a Transverse cross section of Al/Cu weld at the welding speed of 180 mm/min with six locations F1-F6; and b-n corresponding SEM and EDS line scan profiles at locations F1-F6, respectively
Point number | Al (at.%) | Cu (at.%) | Possible phases |
---|---|---|---|
1 | 51.1 | 48.9 | AlCu |
2 | 67.9 | 32.1 | Al2Cu |
3 | 68.3 | 31.7 | Al2Cu |
4 | 7.1 | 92.9 | Cu(Al) |
5 | 39.7 | 60.3 | Al4Cu9 |
6 | 65.1 | 34.9 | Al2Cu |
7 | 41.1 | 58.9 | Al4Cu9 |
8 | 64.9 | 35.1 | Al2Cu |
Table 6 EDS point scanning results for the points marked in Fig. 12
Point number | Al (at.%) | Cu (at.%) | Possible phases |
---|---|---|---|
1 | 51.1 | 48.9 | AlCu |
2 | 67.9 | 32.1 | Al2Cu |
3 | 68.3 | 31.7 | Al2Cu |
4 | 7.1 | 92.9 | Cu(Al) |
5 | 39.7 | 60.3 | Al4Cu9 |
6 | 65.1 | 34.9 | Al2Cu |
7 | 41.1 | 58.9 | Al4Cu9 |
8 | 64.9 | 35.1 | Al2Cu |
Fig. 13 a Transverse cross section of Al/Cu weld at the welding speed of 400 mm/min with six locations F1-F6; and b-n corresponding SEM and EDS line scan profiles at locations F1-F6, respectively
Point number | Al (at.%) | Cu (at.%) | Possible phases |
---|---|---|---|
1 | 62 | 38 | Al2Cu |
2 | 74.3 | 25.7 | Al2Cu |
3 | 62.7 | 37.3 | Al2Cu |
4 | 79.9 | 20.1 | Al2Cu |
5 | 64.9 | 35.1 | Al2Cu |
6 | 76.4 | 23.6 | Al2Cu |
7 | 59 | 41 | Al2Cu |
8 | 77.8 | 22.2 | Al2Cu |
9 | 51.1 | 48.9 | AlCu |
10 | 68.5 | 31.5 | Al2Cu |
Table 7 EDS point scan results for the points marked in Fig. 13
Point number | Al (at.%) | Cu (at.%) | Possible phases |
---|---|---|---|
1 | 62 | 38 | Al2Cu |
2 | 74.3 | 25.7 | Al2Cu |
3 | 62.7 | 37.3 | Al2Cu |
4 | 79.9 | 20.1 | Al2Cu |
5 | 64.9 | 35.1 | Al2Cu |
6 | 76.4 | 23.6 | Al2Cu |
7 | 59 | 41 | Al2Cu |
8 | 77.8 | 22.2 | Al2Cu |
9 | 51.1 | 48.9 | AlCu |
10 | 68.5 | 31.5 | Al2Cu |
Fig. 14 Microhardness distributions of the weld at different welding speeds: a diagram of locations for hardness measurement, b 180 mm/min, c 400 mm/min, d 500 mm/min
[1] |
Z. Lei, X. Zhang, J. Liu, P. Li, J. Manuf. Process. 67, 226 (2021)
DOI URL |
[2] | F.B. Argesi, A. Shamsipur, S.E. Mirsalehi, Acta Metall. Sin. -Engl. Lett. 31, 1183 (2018) |
[3] |
L. Zhou, L.Y. Luo, C.W. Tan, Z.Y. Li, X.G. Song, H.Y. Zhao, Y.X. Huang, J.C. Feng, Opt. Laser Technol. 98, 234 (2018)
DOI URL |
[4] |
C. Yang, J.F. Zhang, G.N. Ma, L.H. Wu, X.M. Zhang, G.Z. He, P. Xue, D.R. Ni, B.L. Xiao, K.S. Wang, Z.Y. Ma, J. Mater. Sci. Technol. 41, 105 (2020)
DOI |
[5] |
Y.Y. Zuo, P. Gong, S.D. Ji, Q.H. Li, Z.W. Ma, Z. Lv, J. Manuf. Process 62, 58 (2021)
DOI URL |
[6] |
J. You, Y. Zhao, C. Dong, S. Miao, Z. Liu, L. Liu, Y. Su, J. Mater. Process Technol. 300, 117402 (2022)
DOI URL |
[7] |
G.H.S.F.L. Carvalho, I. Galvao, R. Mendes, R.M. Leal, A. Loureiro, Int. J. Adv. Manuf. Technol. 103, 3211 (2019)
DOI URL |
[8] |
V.P. Singh, S.K. Patel, N. Kumar, B. Kuriachen, Sci. Technol. Weld. Join. 24, 653 (2019)
DOI URL |
[9] | Y. Zhou, S. Chen, D. Wang, R. Li, B. Liu, J. Pu, Z. Yang, Acta Metall. Sin. -Engl. Lett. 33, 154 (2020) |
[10] |
J. Zhang, S. Guo, D. Wang, J. Xu, T. Huang, R. Xiao, Sci. Technol. Weld. Join. 27, 52 (2022)
DOI URL |
[11] |
I. Galvao, J.C. Oliveira, A. Loureiro, D.M. Rodrigues, Intermetallics 22, 122 (2012)
DOI URL |
[12] |
Y. Mao, Y. Ni, X. Xiao, D. Qin, L. Fu, J. Manuf. Process 60, 356 (2020)
DOI URL |
[13] |
N.A. Muhammad, C.S. Wu, W.H. Tian, J. Alloys Compd. 785, 512 (2019)
DOI URL |
[14] |
N.A. Muhammad, C.S. Wu, J. Manuf. Process 39, 114 (2019)
DOI |
[15] |
C.W. Tan, Z.G. Jiang, L.Q. Li, Y.B. Chen, X.Y. Chen, Mater. Des. 51, 466 (2013)
DOI URL |
[16] |
T. Medhi, B.S. Roy, S.C. Saha, Int. J. Mater. Prod. Technol. 60, 236 (2020)
DOI URL |
[17] |
P. Xue, D.R. Ni, D. Wang, B.L. Xiao, Z.Y. Ma, Mater. Sci. Eng. A 528, 4683 (2011)
DOI URL |
[18] | S.V. Safi, H. Amirabadi, M.K.B. Givi, Mech. Mater. Sci. Eng. J. 4, 25 (2016) |
[19] |
K.P. Mehta, V.J. Badheka, Mater. Manuf. Process 31, 255 (2014)
DOI URL |
[20] |
J. Ouyang, E. Yarrapareddy, R. Kovacevic, J. Mater. Process Technol. 172, 110 (2006)
DOI URL |
[21] |
M. Imam, Y. Sun, H. Fujii, N. Ma, S. Tsutsumi, S. Ahmed, V. Chintapenta, H. Murakawa, Int. J. Adv. Manuf. Technol. 99, 663 (2018)
DOI URL |
[22] | H. Zhang, X. Liu, H. Liu, R. Mei, X. Chen, J. Mater. Eng. Perform. 296, 890 (2020) |
[23] |
R. Anbukkarasi, S.V. Kailas, Int. J. Adv. Manuf. Technol. 106, 5071 (2020)
DOI URL |
[24] |
N.A. Muhammad, C. Wu, Int. J. Mech. Sci. 183, 105784 (2020)
DOI URL |
[25] |
J. Zhao, C. Wu, H. Su, J. Manuf. Process 65, 328 (2021)
DOI URL |
[26] |
M.F.X. Muthu, V. Jayabalan, Trans. Nonferrous Met. Soc. China 26, 984 (2016)
DOI URL |
[27] |
A.O. Al-Roubaiy, S.M. Nabat, A.D.L. Batako, Int. J. Adv. Manuf. Technol. 71, 1631 (2014)
DOI URL |
[28] |
C.J. Hsu, P.W. Kao, N.J. Ho, Scr. Mater. 53, 341 (2005)
DOI URL |
[29] |
W. Zhang, Y.F. Shen, Y.F. Yan, R. Guo, W. Guan, G.L. Guo, Int. J. Adv. Manuf. Technol. 94, 1021 (2018)
DOI URL |
[30] |
T.K. Bhattacharya, H. Das, T.K. Pal, Trans. Nonferrous Met. Soc. China 25, 2833 (2015)
DOI URL |
[31] |
W. Zhang, Y. Shen, Y. Yan, R. Guo, Mater. Sci. Eng. A 690, 355 (2017)
DOI URL |
[32] |
Y. Zhao, J. You, J. Qin, C. Dong, L. Liu, Z. Liu, S. Miao, Mater. Sci. Eng. A 837, 142754 (2022)
DOI URL |
[33] |
P. Xue, B.L. Xiao, Z.Y. Ma, Metall. Mater. Trans. A 46, 3091 (2015)
DOI URL |
[34] |
A. Esmaeili, H.R. Zareie Rajani, M. Sharbati, M.K.B. Givi, M. Shamanian, Intermetallics 19, 1711 (2011)
DOI URL |
[35] |
Q. Chu, W.Y. Li, Y.F. Zou, X.W. Yang, S.J. Hao, X.C. Liu, W.B. Wang, Weld. World 65, 1441 (2021)
DOI URL |
[36] |
K.P. Mehta, V.J. Badheka, J. Mater. Process Technol. 239, 336 (2017)
DOI URL |
[37] |
M.F.X. Muthu, V. Jayabalan, J. Mater. Process Technol. 217, 105 (2015)
DOI URL |
[38] |
C.Y. Chen, H.L. Chen, W.S. Hwang, Mater. Trans. 47, 1232 (2006)
DOI URL |
[39] |
P. Xue, B.L. Xiao, D.R. Ni, Z.Y. Ma, Mater. Sci. Eng. A 527, 5723 (2010)
DOI URL |
[40] |
E. Hug, N. Bellido, Mater. Sci. Eng. A 528, 7103 (2011)
DOI URL |
[41] | M. Braunovic, N. Alexandrov, IEEE Trans. Compon. Pack. Manuf. Technol. A 17, 78 (1994) |
[42] |
F. Liu, L. Fu, H. Chen, J. Manuf. Process 33, 219 (2018)
DOI URL |
[43] |
Y. Hu, Y. Zhao, Y. Peng, W. Yang, X. Ma, B. Wang, J. Manuf. Process 65, 1 (2021)
DOI URL |
[44] |
X.C. Meng, F.F. Wang, Y.M. Jiang, X.T. Ma, L. Wan, Y.X. Huang, Corros. Sci. 192, 109800 (2021)
DOI URL |
[45] | Y.M. Xie, X.C. Meng, D.X. Mao, Z.W. Qin, L. Wang, Y.X. Huang, ACS Appl. Mater. Interfaces 13, 27 (2021) |
[46] |
F. Cao, J. Li, W. Hou, Y. Shen, R. Ni, Mater. Charact. 174, 110998 (2021)
DOI URL |
[47] |
W. Hou, L.H. Ahmad Shah, G. Huang, Y. Shen, A. Gerlich, J. Alloys Compd. 825, 154045 (2020)
DOI URL |
[1] | Junrong Tang, Naeem ul Haq Tariq, Zhipo Zhao, Mingxiao Guo, Hanhui Liu, Yupeng Ren, Xinyu Cui, Yanfang Shen, Jiqiang Wang, Tianying Xiong. Microstructure and Mechanical Properties of Ti-Ta Composites Prepared Through Cold Spray Additive Manufacturing [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(9): 1465-1476. |
[2] | Yinuo Guo, Haijun Su, Peixin Yang, Yong Zhao, Zhonglin Shen, Yuan Liu, Di Zhao, Hao Jiang, Jun Zhang, Lin Liu, Hengzhi Fu. A Review of Emerging Metallic System for High-Energy Beam Additive Manufacturing: Al-Co-Cr-Fe-Ni High Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(9): 1407-1423. |
[3] | Xiong Zhou, Qichi Le, Chenglu Hu, Ruizhen Guo, Tong Wang, Chunming Liu, Dandan Li, Xiaoqiang Li. Mechanical Properties and Corrosion Behavior of Multi-Microalloying Mg Alloys Prepared by Adding AlCoCrFeNi Alloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1301-1316. |
[4] | Fei Qiang, Wen Wang, Ke Qiao, Pai Peng, Ting Zhang, Xiao-Hu Guan, Jun Cai, Qiang Meng, Hua-Xia Zhao, Kuai-She Wang. Microstructure and Mechanical Properties in Friction Stir Welded Thick Al-Zn-Mg-Cu Alloy Plate [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1329-1342. |
[5] | Haoyang Yu, Wei Fang, Jinfei Zhang, Jiaxin Huang, Jiaohui Yan, Xin Zhang, Juan Wang, Jianhang Feng, Fuxing Yin. Microstructural Evolution of Co35Cr25Fe30Ni10 TRIP Complex Concentrated Alloy with the Addition of Minor Cu and Its Effect on Mechanical Properties [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1291-1300. |
[6] | Bao-Jia Hu, Qin-Yuan Zheng, Chun-Ni Jia, Peng Liu, Yi-Kun Luan, Cheng-Wu Zheng, Dian-Zhong Li. Improvement of Mechanical Properties of a Medium-Mn TRIP Steel by Precursor Microstructure Control [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1068-1078. |
[7] | Pengcheng Zhu, Lin Zhang, Zhaochang Li, K. H. Lo, Jianfeng Wang, Yufeng Sun, Shaokang Guan. Microstructure and Mechanical Properties of Friction Stir Welded 1.5 GPa Martensitic High-Strength Steel Plates [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1079-1089. |
[8] | Zhenye Chen, Zhangguo Lin, Jianjun Qi, Yang Feng, Liqing Chen, Guodong Wang. Microstructures and Mechanical Properties of a New Multi-functional 460 MPa Grade Construction Structural Steel [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1131-1142. |
[9] | Hao Gu, Zhide Li, Kaiguang Luo, Laxman Bhatta, Hanqing Xiong, Yun Zhang, Charlie Kong, Hailiang Yu. Enhanced Mechanical Properties of AA5083 Matrix Composite via Introducing Al0.5CoCrFeNi Particles and Cryorolling [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(6): 879-889. |
[10] | Wen Wang, Shan-Yong Chen, Ke Qiao, Pai Peng, Peng Han, Bing Wu, Chen-Xi Wang, Jia Wang, Yu-Hao Wang, Kuai-She Wang. Microstructure, Mechanical Properties, and Corrosion Behavior of Mg-Al-Ca Alloy Prepared by Friction Stir Processing [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 703-713. |
[11] | Peng Gong, Ying-Ying Zuo, Shu-De Ji, De-Jun Yan, Deng-Chang Li, Zhen Shang. Non-keyhole Friction Stir Welding for 6061-T6 Aluminum Alloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 763-772. |
[12] | Jinjin Yao, Shengyang Pang, Yuanhong Wang, Chenglong Hu, Rida Zhao, Jian Li, Sufang Tang, Hui-Ming Cheng. Effect of C/SiC Volume Ratios on Mechanical and Oxidation Behaviors of Cf/C-SiC Composites Fabricated by Chemical Vapor Infiltration Technique [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 801-811. |
[13] | Zhengran Liu, Xi Zhao, Kai Chen, Siqi Wang, Xianwei Ren, Zhimin Zhang, Yong Xue. Microstructural Evolution and Anisotropic Weakening Mechanism of ZK60 Magnesium Alloy Processed by Isothermal Repetitive Upsetting Extrusion [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 839-852. |
[14] | Wen-Ting Zhu, Jun-Jun Cui, Zhen-Ye Chen, Yang Zhao, Li-Qing Chen. Correlation of Microstructure Feature with Impact Fracture Behavior in a TMCP Processed High Strength Low Alloy Construction Steel [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(4): 527-536. |
[15] | Wenbin Tian, Dong Wu, Yiyi Li, Shanping Lu. Precipitation Behavior and Mechanical Properties of a 16Cr-25Ni Superaustenitic Stainless Steel Weld Metal During Post-weld Heat Treatment [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(4): 577-590. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||