Acta Metallurgica Sinica (English Letters) ›› 2015, Vol. 28 ›› Issue (4): 514-520.DOI: 10.1007/s40195-015-0227-7
• Orginal Article • Previous Articles Next Articles
Yun-Long Xue1, Shuang-Ming Li1(), Hong Zhong1, Lai-Ping Li2, Heng-Zhi Fu1
Received:
2014-09-26
Revised:
2014-12-02
Online:
2015-02-17
Published:
2015-07-23
Yun-Long Xue, Shuang-Ming Li, Hong Zhong, Lai-Ping Li, Heng-Zhi Fu. Microstructure Characterization and Fracture Toughness of Laves Phase-Based Cr-Nb-Ti Alloys[J]. Acta Metallurgica Sinica (English Letters), 2015, 28(4): 514-520.
Add to citation manager EndNote|Ris|BibTeX
Fig. 2 SEM micrographs of Laves phase-based Cr2Nb-xTi (x = 20, 30, 40) alloys: a sample B20; b sample T20; c sample B30; d sample T30; e sample B40; f sample T40
Sample | Composition (at%) | Phase | Fraction of Cr2(Nb,Ti) (vol%) | |||
---|---|---|---|---|---|---|
Ti | Cr | Nb | Theo. | Exp. | ||
B20 | 10.7-11.4 | 54.3-56.8 | 31.5-33.4 | C15-Cr2(Nb,Ti) | 68 | 89 |
32.2-33.7 | 22.7-23.6 | 42.9-44.4 | Nb-rich bcc | |||
T20 | 8.9-9.4 | 55.3-58.4 | 31.8-33.2 | C15-Cr2(Nb,Ti) | 81 | |
32.1-33.9 | 19.4-20.5 | 44.8-46.5 | Nb-rich bcc | |||
B30 | 16.5-17.6 | 54.3-56.8 | 24.8-25.9 | C15-Cr2(Nb,Ti) | 53 | 69 |
39.4-41.9 | 28.4-29.5 | 28.6-29.7 | Ti-rich bcc | |||
T30 | 15.7-16.4 | 55.8-57.6 | 25.5-26.7 | C15-Cr2(Nb,Ti) | 64 | |
27.1-28.7 | 24.3-25.7 | 42.3-45.9 | Nb-rich bcc | |||
70.4-76.3 | 15.4-16.7 | 8.9-9.7 | Ti-rich bcc | |||
B40 | 21.2-22.9 | 53.9-56.8 | 19.7-20.8 | C15-Cr2(Nb,Ti) | 34 | 56 |
54.8-58.3 | 9.8-11.2 | 29.7-31.7 | Ti-rich bcc | |||
T40 | 19.2-21.8 | 54.3-57.9 | 18.9-20.5 | C15-Cr2(Nb,Ti) | 54 | |
56.6-58.8 | 10.4-10.9 | 30.2-32.4 | Ti-rich bcc |
Table 1 EDS results and volume fractions of Laves phase C15-Cr2(Nb,Ti) in Cr2Nb-Ti (x = 20, 30, 40) alloys
Sample | Composition (at%) | Phase | Fraction of Cr2(Nb,Ti) (vol%) | |||
---|---|---|---|---|---|---|
Ti | Cr | Nb | Theo. | Exp. | ||
B20 | 10.7-11.4 | 54.3-56.8 | 31.5-33.4 | C15-Cr2(Nb,Ti) | 68 | 89 |
32.2-33.7 | 22.7-23.6 | 42.9-44.4 | Nb-rich bcc | |||
T20 | 8.9-9.4 | 55.3-58.4 | 31.8-33.2 | C15-Cr2(Nb,Ti) | 81 | |
32.1-33.9 | 19.4-20.5 | 44.8-46.5 | Nb-rich bcc | |||
B30 | 16.5-17.6 | 54.3-56.8 | 24.8-25.9 | C15-Cr2(Nb,Ti) | 53 | 69 |
39.4-41.9 | 28.4-29.5 | 28.6-29.7 | Ti-rich bcc | |||
T30 | 15.7-16.4 | 55.8-57.6 | 25.5-26.7 | C15-Cr2(Nb,Ti) | 64 | |
27.1-28.7 | 24.3-25.7 | 42.3-45.9 | Nb-rich bcc | |||
70.4-76.3 | 15.4-16.7 | 8.9-9.7 | Ti-rich bcc | |||
B40 | 21.2-22.9 | 53.9-56.8 | 19.7-20.8 | C15-Cr2(Nb,Ti) | 34 | 56 |
54.8-58.3 | 9.8-11.2 | 29.7-31.7 | Ti-rich bcc | |||
T40 | 19.2-21.8 | 54.3-57.9 | 18.9-20.5 | C15-Cr2(Nb,Ti) | 54 | |
56.6-58.8 | 10.4-10.9 | 30.2-32.4 | Ti-rich bcc |
Fig. 3 TEM results of the eutectic in arc-melted Cr2Nb-40Ti alloy: a bright-field image of the eutectic; b SAD pattern of the bcc solid solution at position A; c SAD pattern of the C15-Cr2(Nb,Ti) at position B
Fig. 4 Fracture toughness of Laves phase-based Cr2Nb-xTi (x = 20, 30, 40) alloys inserted with the typical indentation produced on single Laves phase Cr2(Nb,Ti)
Fig. 5 Crack propagations in Laves phase-based Cr2Nb-xTi (x = 20, 30, 40) alloys: a sample B20; b sample T20; c sample B30; d sample T30; e sample B40; f sample T40
Fig. 6 Low-magnification fracture surfaces of Laves phase-based Cr2Nb-xTi (x = 20, 30, 40) alloys: a sample B20; b sample T20; c sample B30; d sample T30; e sample B40; f sample T40
[1] | M. Takeyama, C.T. Liu, Mater. Sci. Eng. A 132, 61 (1991) |
[2] | A.V. Kazantzis, M. Aindow, I.P. Jones, G.K. Triantafyllidis,Acta Mater. 55, 1873(2007) |
[3] | H.Z. Zheng, S.Q. Lu, J.Y. Zhu, G.M. Liu,Int. J. Refract. Met. Hard Mater. 27, 659(2009) |
[4] | K.W. Li, S.M. Li, S.X. Zhao, H. Zhong, Y.L. Xue, Acta Metall. Sin. (Engl. Lett) 26, 687(2013) |
[5] | T. Takasugi, M. Yoshida, J. Mater. Res. 13, 2505(1998) |
[6] | K.W. Li, S.M. Li, Y.L. Xue, H.Z. Fu,Int. J. Refract. Met. Hard Mater. 36, 154(2013) |
[7] | Y.L. Hu, L.C. Zhang, D. Shuman, B.D. Huey, M. Aindow,Scr. Mater. 60, 309(2009) |
[8] | M. Yoshida, T. Takasugi, Mater. Sci. Eng. A 224, 77 (1997) |
[9] | C.L. Li, J. Kuo, B. Wang, R. Wang, Intermetallics 18, 65 (2010) |
[10] | S.Q. Lu, H.Z. Zheng, L.P. Deng, J. Yao,Mater. Des. 51, 432(2013) |
[11] | C.L. Li, B. Wang, Y.S. Li, R. Wang, Intermetallics 17, 394 (2009) |
[12] | M. Yoshida, T. Takasugi, Mater. Sci. Eng. A 262, 107 (1999) |
[13] | X. Xuan, S.Q. Lu, X.J. Dong, M.G. Huang, J.W. Liu,Adv. Mater. Res. 328-330, 1102(2010) |
[14] | K.S. Chan, D.L. Davidson, Metall. Mater. Trans. A 34, 1833 (2003) |
[15] | K.S. Chan, D.L. Davidson, D.L. Anton, Metall. Mater. Trans. A 28, 1797 (1997) |
[16] | K.S. Chan,Mater. Sci. Eng. A 329-331, 513(2002) |
[17] | J.J. Petrovic, A.K. Vasudevan, Mater. Sci. Eng. A 261, 1 (1999) |
[18] | D.L. Davidson, K.S. Chan, D.L. Anton, Metall. Mater. Trans. A 27, 3007 (1996) |
[19] | V.N. Svechnikov, Y.A. Kocherzhinsky, V.I. Latysheva, V.M. Pan,Sb. Nauchn. Tr. Inst. Metallofiz. 16, 128(1962) |
[20] | Sanboh Lee, P.K. Liaw, C.T. Liu, Y.T. Chou. Mater. Sci. Eng., A 268, 184 (1999) |
[21] | C. Jiang,Acta Mater. 55, 1599(2007) |
[22] | D.J. Thoma, K.A. Nibur, K.C. Chen, J.C. Cooley, L.B. Dauelsberg, W.L. Hults, P.G. Kotula,Mater. Sci. Eng. A 329-331, 408(2002) |
[23] | C.T. Liu, P.F. Tortorelli, J.A. Horton, C.A. Carmichael, Mater. Sci. Eng. A 214, 23 (1996) |
[24] | D.J. Thoma, F. Chu, P. Peralta, P.G. Kotula, K.C. Chen, T.E. Mitchell,Mater. Sci. Eng. A 239-240, 251(1997) |
[25] | Z. Li, L.M. Peng,Acta Mater. 55, 6573(2007) |
[26] | A. Khan, H.M. Chan, M.P. Harmer, J. Am. Ceram. Soc. 83, 833(2000) |
[27] | D. Sciti, G. Celotti, G. Pezzotti, S. Guicciardi, Appl. Phys. A 86, 243 (2007) |
[28] | D.L. Davidson, K.S. Chan, Metall. Mater. Trans. A 33, 401 (2002) |
[29] | X. Xiao, S.Q. Lu, X.J. Dong, M.G. Huang, J.W. Liu,Adv. Mater. Res. 328-330, 1102(2011) |
[30] | W.Y. Kim, H. Tanaka, A. Kasama, S. Hanada, Intermetallics 9, 827 (2001) |
[1] | Guang-Da Sun, Li Zhou, Ren-Xiao Zhang, Ling-Yun Luo, Hao Xu, Hong-Yun Zhao, Ning Guo, Di Zhang. Effect of Sleeve Plunge Depth on Interface/Mechanical Characteristics in Refill Friction Stir Spot Welded Joint [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(4): 551-560. |
[2] | Ke Xu, Tao Fang, Longfei Zhao, Haichao Cui, Fenggui Lu. Effect of Trace Element on Microstructure and Fracture Toughness of Weld Metal [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(3): 425-436. |
[3] | Hamid Ashrafi, Morteza Shamanian, Rahmatollah Emadi, Ehsan Ghassemali. Void Formation and Plastic Deformation Mechanism of a Cold-Rolled Dual-Phase Steel During Tension [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(2): 299-306. |
[4] | Mao-Kai Chen, Jun Xie, De-Long Shu, Gui-Chen Hou, Shu-Ling Xun, Jin-Jiang Yu, Li-Rong Liu, Xiao-Feng Sun, Yi-Zhou Zhou. Effect of Long-Term Thermal Exposures on Tensile Behaviors of K416B Nickel-Based Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(12): 1699-1708. |
[5] | Manoj Kumar Pathak, Amit Joshi, K. K. S. Mer, R. Jayaganthan. Mechanical Properties and Microstructural Evolution of Bulk UFG Al 2014 Alloy Processed Through Cryorolling and Warm Rolling [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(7): 845-856. |
[6] | Peng Liu, Zhao-Kuang Chu, Yong Yuan, Dao-Hong Wang, Chuan-Yong Cui, Gui-Chen Hou, Yi-Zhou Zhou, Xiao-Feng Sun. Microstructures and Mechanical Properties of a Newly Developed Austenitic Heat Resistant Steel [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(4): 517-525. |
[7] | Liu Liu, Jie Meng, Jin-Lai Liu, Hai-Feng Zhang, Xu-Dong Sun, Yi-Zhou Zhou. Effects of Crystal Orientations on the Low-Cycle Fatigue of a Single-Crystal Nickel-Based Superalloy at 980 °C [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(3): 381-390. |
[8] | Rong-Hua Li, Peng Zhang, Zhe-Feng Zhang. Torsional Fatigue Cracking and Fracture Behaviors of Cold-Drawn Copper: Effects of Microstructure and Axial Stress [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(12): 1521-1529. |
[9] | Xu Kong, Yu-Min Wang, Xu Zhang, Qing Yang, Guo-Xing Zhang, Li-Na Yang, Rui Yang. Monitoring Damage Evolution in a Titanium Matrix Composite Shaft Under Torsion Loading Using Acoustic Emission [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(10): 1244-1252. |
[10] | Can Huang, Jian Tu, Yu-Ren Wen, Zhi Hu, Zhi-Ming Zhou, An-Ping Dong, Guo-Liang Zhu. Microstructural Characterization of Pure Titanium Treated by Laser Surface Treatment Under Different Processing Parameters [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(3): 321-328. |
[11] | Dong-Wei Ao, Xing-Rong Chu, Shu-Xia Lin, Yang Yang, Jun Gao. Hot Tensile Behaviors and Microstructure Evolution of Ti-6Al-4V Titanium Alloy Under Electropulsing [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(12): 1287-1296. |
[12] | A. A. Yuriev, V. E. Gromov, V. A. Grishunin, Yu. F. Ivanov, R. S. Qin, A. P. Semin. Stages and Fracture Mechanisms of Lamellar Pearlite of 100-m-Long Differentially Hardened Rails Under Long-Term Operation Conditions [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(12): 1356-1361. |
[13] | Jie Yang. Micromechanical Analysis of In-Plane Constraint Effect on Local Fracture Behavior of Cracks in the Weakest Locations of Dissimilar Metal Welded Joint [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(9): 840-850. |
[14] | Noritake Hiyoshi. Crack Initiation and Propagation Evaluation for Sn-5Sb Solder Under Low-Cycle Fatigue [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(9): 851-856. |
[15] | Meng Wang, Zhen-Yu Liu, Cheng-Gang Li. Correlations of Ni Contents, Formation of Reversed Austenite and Toughness for Ni-Containing Cryogenic Steels [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(3): 238-237. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||