Acta Metallurgica Sinica (English Letters) ›› 2023, Vol. 36 ›› Issue (12): 2069-2078.DOI: 10.1007/s40195-023-01605-9
Previous Articles Next Articles
Jian Wang1,2, Jiantao Fan1,2, Liming Fu1,2(), Aidang Shan1,2(
)
Received:
2023-05-31
Revised:
2023-07-12
Accepted:
2023-07-29
Online:
2023-09-15
Published:
2023-09-15
Contact:
Liming Fu, Aidang Shan
Jian Wang, Jiantao Fan, Liming Fu, Aidang Shan. Improved Mechanical Properties in Carbon Martensitic Steel Achieved by Continuous Carbon Gradient and Multilayered Structure[J]. Acta Metallurgica Sinica (English Letters), 2023, 36(12): 2069-2078.
Add to citation manager EndNote|Ris|BibTeX
Samples | C | Cr | Ni | Mn | Si | S/P | Fe |
---|---|---|---|---|---|---|---|
High-carbon steel | 1.00 | 1.50 | ≤ 0.30 | 1.15 | 0.60 | ≤ 0.03 | Bal. |
Low-carbon steel | 0.20 | 1.65 | 3.55 | 0.40 | 0.20 | ≤ 0.03 | Bal. |
Table 1 Alloy content of the high-carbon and low-carbon steels (wt%)
Samples | C | Cr | Ni | Mn | Si | S/P | Fe |
---|---|---|---|---|---|---|---|
High-carbon steel | 1.00 | 1.50 | ≤ 0.30 | 1.15 | 0.60 | ≤ 0.03 | Bal. |
Low-carbon steel | 0.20 | 1.65 | 3.55 | 0.40 | 0.20 | ≤ 0.03 | Bal. |
Fig. 1 Schematic diagram of the manufacture of multilayered carbon gradient steel, including the acid pickling, preliminary diffusion in vacuum hot-pressing furnace a and hot rolling followed by low-temperature tempering b. RD, ND, and TD represent the rolling direction, normal direction, and transverse direction, respectively
Fig. 3 Microstructure of the quenched and tempered samples: A diagram and optical image of quenched samples in RD-ND profile; B SEM images of quenched sample in the b1, b2, b3 and b4 locations marked in A, which is located in low-carbon, medium-carbon and high-carbon regions; C and D SEM images of tempered samples at 200 °C and 300 °C, respectively. The locations of c1 d1, c2 d2, c3 d3 and c4 d4 correspond with those in B
Fig. 4 Phase distribution from the EBSD results of quenched a and tempered samples at 200 °C b, 300 °C c. Retained austenite and prior carbides are marked by pink and green respectively. The element maps of carbon and manganese are included to mark the demarcation between high-carbon and low-carbon regions
Fig. 6 Tensile stress-strain curves of quenched a, tempered MLCGS samples at 200 °C b, 300 °C c. Note that tensile stress-strain curves of high-carbon steel, low-carbon steel and stainless steel (304ss) are added for comparison
Fig. 7 Strain hardening rate of the tempered MLCGS samples at 200 °C a, 300 °C b, in comparison with the low-carbon steel, high-carbon steel and stainless steel (304ss)
Fig. 8 Comparison of results with short-time diffusion sample after tempering at 200 °C: a, b optical microscopy images, c comparison of the microhardness, d comparison of the tensile stress-strain curves
Fig. 9 Strain distribution in RD-ND plane after tensile test with the plastic strain approximately 6%, for the multilayered sample tempered at 200 °C: a, b optical images before and after tensile test; c, d strain mappings along the TD and ND after tensile test, respectively; e detailed mean value of plastic strain along the TD and ND, ΔεTD and ΔεND
Fig. 10 Images of tensile specimen a, fracture mode b, fracture surface morphology c of the tempered MLCGS sample at 200 °C. The 3D morphology of fracture surface is added in c
1. |
S. Jiang, H. Wang, Y. Wu, X. Liu, H. Chen, M. Yao, B. Gault, D. Ponge, D. Raabe, A. Hirata, M. Chen, Y. Wang, Z. Lu, Nature 544,460 (2017)
DOI URL |
2. |
B.B. He, B. Hu, H.W. Yen, G.J. Cheng, Z.K. Wang, H.W. Luo, M.X. Huang, Science 357,1029 (2017)
DOI PMID |
3. |
Y. Wang, J. Sun, T. Jiang, Y. Sun, S. Guo, Y. Liu, Acta Mater. 158, 247 (2018)
DOI URL |
4. |
H.K.D.H. Bhadeshia, Prog. Mater Sci. 57, 268 (2012)
DOI URL |
5. |
L. Lv, L. Fu, Y. Sun, A. Shan, Mater. Sci. Eng. A 731, 369 (2018)
DOI URL |
6. |
E.I. Galindo-Nava, P.E.J. Rivera-Díaz-del-Castillo, Scr. Mater. 110, 96 (2016)
DOI URL |
7. |
B. Hutchinson, J. Hagström, O. Karlsson, D. Lindell, M. Tornberg, F. Lindberg, M. Thuvander, Acta Mater. 59, 5845 (2011)
DOI URL |
8. |
A. Litwinchuk, F.X. Kayser, H.H. Baker, A. Henkin, J. Mater. Sci. 11, 1200 (1976)
DOI URL |
9. |
A.T.W. Barrow, J.H. Kang, P.E.J. Rivera-Díaz-del-Castillo, Acta Mater. 60, 2805 (2012)
DOI URL |
10. | S. Murphy, A. Whiteman, Mater. Trans. 1, 843 (1970) |
11. |
Y. Ohmori, S. Sugisawa, Trans. Japan Inst. Metals 12, 170 (1971)
DOI URL |
12. | R.A. Grange, C.R. Hribal, L.F. Porter, Mater. Trans. A 8, 1775 (1977) |
13. |
J. Speer, D.K. Matlock, B.C. De Cooman, J.G. Schroth, Acta Mater. 51, 2611 (2003)
DOI URL |
14. |
S. Qin, Y. Liu, Q. Hao, Y. Wang, N. Chen, X. Zuo, Y. Rong, Metall. Mater. Trans. A 46, 4047 (2015)
DOI URL |
15. |
S. Qin, Y. Liu, Q. Hao, X. Zuo, Y. Rong, N. Chen, Metall. Mater. Trans. A 47, 4853 (2016)
DOI URL |
16. |
H. Wu, G. Fan, Prog. Mater. Sci. 113, 100675 (2020)
DOI URL |
17. |
Y. Zhu, X. Wu, Prog. Mater. Sci. 131, 101019 (2023)
DOI URL |
18. |
J. Fan, X. Ji, L. Fu, J. Wang, S. Ma, Y. Sun, M. Wen, A. Shan, Int. J. Plast. 157, 103398 (2022)
DOI URL |
19. |
O. Bouaziz, Y. Bréchet, J.D. Embury, Adv. Eng. Mater. 10, 24 (2008)
DOI URL |
20. |
X. Li, L. Lu, J. Li, X. Zhang, H. Gao, Nat. Rev. Mater. 5, 706 (2020)
DOI |
21. |
T. Koseki, J. Inoue, S. Nambu, Mater. Trans. 55, 227 (2014)
DOI URL |
22. |
K. Lu, Nat. Rev. Mater. 1, 16019 (2016)
DOI |
23. |
J. Wang, Q. Tao, H. Zheng, L. Fu, A. Shan, Mater. Lett. 308, 131059 (2022)
DOI URL |
24. |
M. Ojima, J. Inoue, S. Nambu, P. Xu, K. Akita, H. Suzuki, T. Koseki, Scr. Mater. 66, 139 (2012)
DOI URL |
25. |
W.X. Yu, B.X. Liu, X.P. Cui, Y.C. Dong, X. Zhang, J.N. He, C.X. Chen, F.X. Yin, Mater. Sci. Eng. A 727, 70 (2018)
DOI URL |
26. |
C. Jeong, T. Oya, J. Yanagimoto, J. Mater. Process. Technol. 213, 614 (2013)
DOI URL |
27. |
R. Cao, X. Yu, Z. Feng, W. Liu, R. Xu, M. Ojima, T. Koseki, Mater. Charact. 145, 634 (2018)
DOI URL |
28. |
J. He, Y. Ma, D. Yan, S. Jiao, F. Yuan, X. Wu, Mater. Sci. Eng. A 726, 288 (2018)
DOI URL |
29. |
R. Cao, X.K. Zhao, Y. Ding, X.B. Zhang, X.X. Jiang, Y.J. Yan, J.H. Chen, Mater. Charact. 139, 153 (2018)
DOI URL |
30. |
W.X. Yu, B.X. Liu, J.N. He, C.X. Chen, W. Fang, F.X. Yin, Mater. Sci. Eng. A 767, 138426 (2019)
DOI URL |
31. |
J.G. Kim, S.M. Baek, H.H. Lee, K.-G. Chin, S. Lee, H.S. Kim, Acta Mater. 147, 304 (2018)
DOI URL |
32. |
J. Park, M.C. Jo, T. Song, H.S. Kim, S.S. Sohn, S. Lee, Mater. Sci. Eng. A 759, 320 (2019)
DOI URL |
33. |
Z. Yang, F. Jiang, Y. Wang, Q. Wang, M. Huang, Y. Wang, C. Chen, F. Zhang, Mater. Res. Lett. 9, 391 (2021)
DOI URL |
34. |
F. Jiang, Y. Wang, Z. Yang, C. Chen, F. Zhang, Mater. Sci. Eng. A 841, 143035 (2022)
DOI URL |
35. |
Q. Tao, J. Wang, L. Fu, Z. Chen, C. Shen, D. Zhang, Z. Sun, J. Mater. Sci. Technol. 33, 1210 (2017)
DOI URL |
36. |
G. Krauss, ISIJ Int. 35, 349 (1995)
DOI URL |
37. | X. Wu, P. Jiang, L. Chen, F. Yuan, Y.T. Zhu,Proc. Natl. Acad. Sci. U.S.A. 111, 7197 (2014) |
38. |
Z. Cheng, L. Lu, Scr. Mater. 164, 130 (2019)
DOI URL |
[1] | Wenhe Li, Wenshuang Gu, Yuqiu Chen, Jun Gong, Zhiliang Pei, Chao Sun. Microstructure, Mechanical, and Tribological Properties of Amorphous WB2/Ti Multilayer Coatings [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(8): 1385-1396. |
[2] | Fuyang Li, Jialong Tian, Huabing Li, L.M. Deineko, Zhouhua Jiang. Simultaneously Enhancing Strength, Ductility and Corrosion Resistance of a Martensitic Stainless Steel via Substituting Carbon by Nitrogen [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(5): 705-716. |
[3] | Chen Chen, Junjie Yu, Jingyu Lu, Jian Zhang, Xuan Su, Chen-Hao Qian, Yulin Chen, Weixi Ji, Manping Liu. Phase Transformation in Al/Zn Multilayers during Mechanical Alloying [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(10): 1709-1718. |
[4] | Yuxuan Liu, Shichang Liu, Liming Fu, Huanrong Wang, Wei Wang, Mao Wen, Aidang Shan. Achieving Fine-Grained Microstructure and Superior Mechanical Property in a Plain Low-Carbon Steel Using Heavy Cold Rolling Combined with Short-Time Heat Treatment [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(10): 1719-1734. |
[5] | Yinbo Chen, Zhaoqing Gao, Zhi-Quan Liu. Temperature Gradient Induced Orientation Change of Bi Grains in Sn-Bi57-Ag0.7 Solder Joint [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1184-1194. |
[6] | Enobong Felix Daniel, Junhua Dong, Xiaofang Li, Ini-Ibehe Nabuk Etim, Inime Ime Udoh, Rongyao Ma, Lei Chen, Changgang Wang. Corrosion Behaviour of Carbon Steel Fasteners in Neutral Chloride Solution [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(4): 563-576. |
[7] | W. B. Shi, Y. M. Liu, W. H. Li, T. Li, H. Lei, J. Gong, C. Sun. Microstructure and Properties of WB2/Cr Multilayer Films with Different Bilayer Numbers Deposited by Magnetron Sputtering [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(4): 693-702. |
[8] | Yong Wen, Yan-Fei Wang, Hao Ran, Wei Wei, Jun-Ming Zhang, Chong-Xiang Huang. Improving the Mechanical and Tribological Properties of NiTi Alloys by Combining Cryo-Rolling and Post-Annealing [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(2): 317-325. |
[9] | Hongchang Qian, Shangyu Liu, Wenlong Liu, Pengfei Ju, Dawei Zhang. Microbiologically Influenced Corrosion of Q235 Carbon Steel by Aerobic Thermoacidophilic Archaeon Metallosphaera cuprina [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(2): 201-211. |
[10] | Shuimiao Jiang, Lichen Bai, Qi An, Zhe Yan, Weiming Li, Kaisheng Ming, Shijian Zheng. Dependence of Plastic Stability on 3D Interface Layer in Nanolaminated Materials [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(11): 1759-1764. |
[11] | Xinbo Ji, Liming Fu, Han Zheng, Jian Wang, Hengchang Lu, Wei Wang, Mao Wen, Han Dong, Aidang Shan. Strengthening of Ultrafine Lamellar-Structured Martensite Steel via Tempering-Induced Nanoprecipitation [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(11): 1812-1824. |
[12] | Yanqing Lai, Shi Chen, Xiaolei Ren, Yuanyuan Qiao, Ning Zhao. Solid-liquid Interdiffusion Bonding of Cu/Sn/Ni Micro-joints with the Assistance of Temperature Gradient [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(11): 1912-1924. |
[13] | Yu-Wei Liu, Jian Zhang, Xiao Lu, Miao-Ran Liu, Zhen-Yao Wang. Effect of Metal Cations on Corrosion Behavior and Surface Structure of Carbon Steel in Chloride Ion Atmosphere [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1302-1310. |
[14] | Lu An, Yan-Tao Sun, Shan-Ping Lu, Zhen-Bo Wang. Enhanced Fatigue Property of Welded S355J2W Steel by Forming a Gradient Nanostructured Surface Layer [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1252-1258. |
[15] | Jiang-Li Ning, Bo Xu, Yun-Li Feng, Xu-Dong Li, Xin-Kang Li, Wei-Ping Tong. Tension-Compression Yield Asymmetry Influenced by the Variable Deformation Modes in Gradient Structure Mg Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(2): 252-266. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||