Acta Metallurgica Sinica (English Letters) ›› 2023, Vol. 36 ›› Issue (10): 1719-1734.DOI: 10.1007/s40195-023-01579-8
Previous Articles Next Articles
Yuxuan Liu1, Shichang Liu2, Liming Fu1(), Huanrong Wang3, Wei Wang3, Mao Wen1, Aidang Shan1(
)
Received:
2023-04-20
Revised:
2023-05-08
Accepted:
2023-05-17
Online:
2023-10-10
Published:
2023-08-02
Contact:
Liming Fu, Yuxuan Liu, Shichang Liu, Liming Fu, Huanrong Wang, Wei Wang, Mao Wen, Aidang Shan. Achieving Fine-Grained Microstructure and Superior Mechanical Property in a Plain Low-Carbon Steel Using Heavy Cold Rolling Combined with Short-Time Heat Treatment[J]. Acta Metallurgica Sinica (English Letters), 2023, 36(10): 1719-1734.
Add to citation manager EndNote|Ris|BibTeX
C | Si | Mn | P | S | Fe |
---|---|---|---|---|---|
0.17 | 0.27 | 0.42 | 0.03 | 0.027 | Bal. |
Table 1 Chemical compositions of the plain low-carbon steel (wt%)
C | Si | Mn | P | S | Fe |
---|---|---|---|---|---|
0.17 | 0.27 | 0.42 | 0.03 | 0.027 | Bal. |
State | β (rad) | ρ (1012 m−2) |
---|---|---|
RACed | 0.152 | 2.9 |
IHRed | 0.236 | 7.1 |
HCRed | 0.422 | 22.6 |
RACed-STH | 0.224 | 6.4 |
IHRed-STH | 0.371 | 17.4 |
HCRed-STH | 0.829 | 87.0 |
Table 2 Full width at half maxima (β) and dislocation density (ρ) of the plain low-carbon steel in different states
State | β (rad) | ρ (1012 m−2) |
---|---|---|
RACed | 0.152 | 2.9 |
IHRed | 0.236 | 7.1 |
HCRed | 0.422 | 22.6 |
RACed-STH | 0.224 | 6.4 |
IHRed-STH | 0.371 | 17.4 |
HCRed-STH | 0.829 | 87.0 |
Fig. 6 EBSD characterization of the samples without STH. The constituent phases and grain boundaries: a RACed; d IHRed; g HCRed. The grain size images: b RACed; e IHRed; h HCRed. IPF images: c RACed; f IHRed; i HCRed. Grain boundary misorientation distributions and grain size distributions are shown in insets of corresponding images
Fig. 7 EBSD characterization of the samples with STH. The constituent phases and grain boundaries: a RACed-STH; d IHRed-STH; g HCRed-STH. The grain size images: b RACed-STH; e IHRed-STH; h HCRed-STH. The IPF color images: c RACed-STH; f IHRed-STH; i HCRed-STH. Grain boundary misorientation distributions and grain size distributions are shown in insets of corresponding images
State | Phase | F (%) | davg (μm) | fHAGB (%) |
---|---|---|---|---|
RACed | F-P | 86.0 | 12.2 | 58.3 |
IHRed | F-P | 84.0 | 4.1 | 34.8 |
HCRed | F-P | 85.0 | 0.25 | 23.8 |
RACed-STH | F-M | 29.5 | 3.3 | 48.2 |
IHRed-STH | F-M | 10.9 | 2.4 | 43.8 |
HCRed-STH | M | 0 | 1.9 | 38.9 |
Table 3 Measured fractions of ferrite (F), average grains sizes (davg) and fractions of HAGBs (fHAGB)
State | Phase | F (%) | davg (μm) | fHAGB (%) |
---|---|---|---|---|
RACed | F-P | 86.0 | 12.2 | 58.3 |
IHRed | F-P | 84.0 | 4.1 | 34.8 |
HCRed | F-P | 85.0 | 0.25 | 23.8 |
RACed-STH | F-M | 29.5 | 3.3 | 48.2 |
IHRed-STH | F-M | 10.9 | 2.4 | 43.8 |
HCRed-STH | M | 0 | 1.9 | 38.9 |
Fig. 9 a, b TEM bright field images of the HCRed-STH sample showing the typical lath martensite, c TEM bright field image and d TEM dark field image with corresponding diffraction patterns of the HCRed-STH showing the typical twins
Fig. 10 TEM bright field images of the HCRed-STH: a, b showing spherical cementite; c, d showing super-fined carbides in martensitic matrix with corresponding diffraction patterns
State | YS (MPa) | TS (MPa) | Y/T | UE (%) | TE (%) |
---|---|---|---|---|---|
RACed | 306 | 471 | 0.65 | 18.0 | 28.5 |
IHRed | 523 | 633 | 0.83 | 11.0 | 22.0 |
HCRed | 1053 | 1072 | 0.98 | 0.86 | 3.1 |
RACed-STH | 975 | 1413 | 0.69 | 2.7 | 5.9 |
IHRed-STH | 1135 | 1511 | 0.75 | 2.9 | 7.2 |
HCRed-STH | 1224 | 1583 | 0.77 | 4.0 | 7.3 |
Table 4 Tensile properties including yield strength (YS), tensile strength (TS), yield strength/tensile strength ratio (Y/T), uniform elongation (UE) and total elongation (TE)
State | YS (MPa) | TS (MPa) | Y/T | UE (%) | TE (%) |
---|---|---|---|---|---|
RACed | 306 | 471 | 0.65 | 18.0 | 28.5 |
IHRed | 523 | 633 | 0.83 | 11.0 | 22.0 |
HCRed | 1053 | 1072 | 0.98 | 0.86 | 3.1 |
RACed-STH | 975 | 1413 | 0.69 | 2.7 | 5.9 |
IHRed-STH | 1135 | 1511 | 0.75 | 2.9 | 7.2 |
HCRed-STH | 1224 | 1583 | 0.77 | 4.0 | 7.3 |
Processing techniques | YS (MPa) | TS (MPa) | TE (%) | Reference |
---|---|---|---|---|
Intercritical annealing | 220 | 400 | 33 | Jamei et al. [ |
Intercritical annealing | 390 | 520 | 27 | Kundu et al. [ |
Intercritical annealing | 400 | 670 | 29 | Balbi et al. [ |
Intercritical annealing | 720 | 812 | 15.1 | Molaei and Ekrami [ |
Intercritical annealing + Aging | 390 | 520 | 27 | Zamani et al. [ |
Cold roll bonding | 361 | 540 | 20 | Saeidi et al. [ |
Cold rolling + Intercritical annealing | 300 | 520 | 29 | Nikkhah et al. [ |
Cold rolling + Intercritical annealing | 458 | 947 | 12.5 | Park et al. [ |
Cold rolling + Intercritical annealing | 556 | 1048 | 4.2 | Sodjit and Uthaisangsuk [ |
Warm rolling + Intercritical annealing | 525 | 1037 | 7.3 | Calcagnotto et al. [ |
Asymmetric rolling + Intercritical annealing | 1067 | 1172 | 13.5 | Yaghoobi et al. [ |
HCR + STH | 1224 | 1583 | 7.3 | Present work |
Table 5 Comparison of YS, TS and TE of plain low-carbon steels fabricated by different processing techniques
Processing techniques | YS (MPa) | TS (MPa) | TE (%) | Reference |
---|---|---|---|---|
Intercritical annealing | 220 | 400 | 33 | Jamei et al. [ |
Intercritical annealing | 390 | 520 | 27 | Kundu et al. [ |
Intercritical annealing | 400 | 670 | 29 | Balbi et al. [ |
Intercritical annealing | 720 | 812 | 15.1 | Molaei and Ekrami [ |
Intercritical annealing + Aging | 390 | 520 | 27 | Zamani et al. [ |
Cold roll bonding | 361 | 540 | 20 | Saeidi et al. [ |
Cold rolling + Intercritical annealing | 300 | 520 | 29 | Nikkhah et al. [ |
Cold rolling + Intercritical annealing | 458 | 947 | 12.5 | Park et al. [ |
Cold rolling + Intercritical annealing | 556 | 1048 | 4.2 | Sodjit and Uthaisangsuk [ |
Warm rolling + Intercritical annealing | 525 | 1037 | 7.3 | Calcagnotto et al. [ |
Asymmetric rolling + Intercritical annealing | 1067 | 1172 | 13.5 | Yaghoobi et al. [ |
HCR + STH | 1224 | 1583 | 7.3 | Present work |
[1] |
J. Du, G. Liu, Y. Feng, H. Feng, T. Li, F. Zhang, Mater. Sci. Eng. A 868, 144770 (2023)
DOI URL |
[2] | T. Islam, H.M.M.A. Rashed, in Reference Module in Materials Science and Materials Engineering (Elsevier, 2019) |
[3] |
T.G. Langdon, Acta Mater. 61, 7035 (2013)
DOI URL |
[4] |
X. Ji, L. Fu, H. Zheng, J. Peng, W. Wang, A. Shan, Mater. Sci. Eng. A 826, 141977 (2021)
DOI URL |
[5] | H. Zheng, L. Fu, Z. Li, X. Ji, Q. Wang, W. Wang, A. Shan, Mater. Today. Commun. 21, 100646 (2019) |
[6] |
R. Poulain, F. Amann, J. Deya, J. Bourgon, S. Delannoy, F. Prima, Mater. Lett. 317, 132114 (2022)
DOI URL |
[7] |
T. Morita, S. Tanaka, S. Ninomiya, Mater. Sci. Eng. A 669, 127 (2016)
DOI URL |
[8] |
A. Karmakar, M. Ghosh, D. Chakrabarti, Mater. Sci. Eng. A 564, 389 (2013)
DOI URL |
[9] |
G. Liu, S. Zhang, J. Li, J. Wang, Q. Meng, Mater. Sci. Eng. A 669, 387 (2016)
DOI URL |
[10] |
K. Tomimura, S. Takaki, S. Tanimoto, Y. Tokunaga, ISIJ Int. 31, 721 (1991)
DOI URL |
[11] |
J.N. Huang, Z.Y. Tang, H. Ding, H. Zhang, L.L. Bi, R.D.K. Misra, Mater. Sci. Eng. A 764, 138231 (2019)
DOI URL |
[12] |
S. Mishra, A. Mishra, B.K. Show, J. Maity, Mater. Sci. Eng. A 688, 262 (2017)
DOI URL |
[13] |
A. Saha, D.K. Mondal, K. Biswas, J. Maity, Mater. Sci. Eng. A 534, 465 (2012)
DOI URL |
[14] |
H. Azizi-Alizamini, M. Militzer, W.J. Poole, Metall. Mater. Trans. A 42, 1544 (2011)
DOI URL |
[15] | N. Rani, S. Chahal, A.S. Chauhan, P. Kumar, R. Shukla, S.K. Singh, Mater. Today. Proc. 12, 543 (2019) |
[16] |
M. Wiessner, E. Gamsjäger, S. van der Zwaag, P. Angerer, Mater. Sci. Eng. A 682, 117 (2017)
DOI URL |
[17] |
C.N. Li, F.Q. Ji, G. Yuan, J. Kang, R.D.K. Misra, G.D. Wang, Mater. Sci. Eng. A 662, 100 (2016)
DOI URL |
[18] |
T.T. Huang, R.B. Gou, W.J. Dan, W.G. Zhang, Mater. Sci. Eng. A 672, 88 (2016)
DOI URL |
[19] |
M. Calcagnotto, Y. Adachi, D. Ponge, D. Raabe, Acta Mater. 59, 658 (2011)
DOI URL |
[20] |
Y. Zhu, X. Wu, Prog. Mater. Sci. 131, 101019 (2023)
DOI URL |
[21] |
J. Zhang, H. Di, Y. Deng, R.D.K. Misra, Mater. Sci. Eng. A 627, 230 (2015)
DOI URL |
[22] |
A. Ramazani, K. Mukherjee, U. Prahl, W. Bleck, Metall. Mater. Trans. A 43, 3850 (2012)
DOI URL |
[23] |
F. Jamei, H. Mirzadeh, M. Zamani, Mater. Sci. Eng. A 750, 125 (2019)
DOI URL |
[24] |
A. Kundu, D.P. Field, Mater. Sci. Eng. A 667, 435 (2016)
DOI URL |
[25] |
M. Balbi, I. Alvarez-Armas, A. Armas, Mater. Sci. Eng. A 733, 1 (2018)
DOI URL |
[26] |
M.J. Molaei, A. Ekrami, Mater. Sci. Eng. A 527, 235 (2009)
DOI URL |
[27] |
M. Zamani, H. Mirzadeh, M. Maleki, Mater. Sci. Eng. A 734, 178 (2018)
DOI URL |
[28] |
N. Saeidi, M. Karimi, M.R. Toroghinejad, Mater. Chem. Phys. 192, 1 (2017)
DOI URL |
[29] |
S. Nikkhah, H. Mirzadeh, M. Zamani, Mater. Chem. Phys. 230, 1 (2019)
DOI |
[30] |
K. Park, M. Nishiyama, N. Nakada, T. Tsuchiyama, S. Takaki, Mater. Sci. Eng. A 604, 135 (2014)
DOI URL |
[31] |
S. Sodjit, V. Uthaisangsuk, Mater. Des. 41, 370 (2012)
DOI URL |
[32] |
M. Calcagnotto, D. Ponge, D. Raabe, Mater. Sci. Eng. A 527, 7832 (2010)
DOI URL |
[33] |
F. Yaghoobi, R. Jamaati, H.J. Aval, Mater. Sci. Eng. A 788, 139584 (2020)
DOI URL |
[34] |
Y. Furuya, S. Matsuoka, S. Shimakura, T. Hanamura, S. Torizuka, Scr. Mater. 52, 1163 (2005)
DOI URL |
[35] |
K.K. Ray, D. Mondal, Acta Metall. Mater. 39, 2201 (1991)
DOI URL |
[36] |
G. Krauss, Mater. Sci. Eng. A 273-275, 40 (1999)
DOI URL |
[37] |
R. Song, D. Ponge, D. Raabe, Scr. Mater. 52, 1075 (2005)
DOI URL |
[38] |
D. Zhang, M. Zhang, R. Lin, G. Liu, J. Li, Y. Feng, Mater. Sci. Eng. A 827, 142091 (2021)
DOI URL |
[39] | W.B. Morrison, ASM Trans. 59, 824 (1966) |
[40] |
C. Zheng, L. Li, W. Yang, Z. Sun, Mater. Sci. Eng. A 617, 31 (2014)
DOI URL |
[41] |
T. Gladman, Mater. Sci. Technol. 15, 30 (1999)
DOI URL |
[1] | Liwei Lan, Wenxian Wang, Zeqin Cui, Xiaohu Hao. Unique Duplex Microstructure and Porosity Effect on Mechanical Properties of AlCoCrFeNi2.1 Eutectic High-Entropy Alloys Processed by Selective Laser Melting [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(9): 1465-1481. |
[2] | Jia-Qi Zheng, Ming-Liang Wang, Wen-Na Jiao, Long-Jiang Zou, Yan Di. Effect of Ti Addition on Microstructure Evolution and Mechanical Properties of Al18Co13Cr10Fe14Ni45 Eutectic High-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(9): 1493-1501. |
[3] | Zhonghua Jiang, Pei Wang, Dianzhong Li. Role of Solute Rare Earth in Altering Phase Transformations during Continuous Cooling of a Low Alloy Cr-Mo-V Steel [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(9): 1523-1535. |
[4] | Xiaoyuan Teng, Jianchao Pang, Feng Liu, Chenglu Zou, Xin Bai, Shouxin Li, Zhefeng Zhang. Fatigue Life Prediction of Gray Cast Iron for Cylinder Head Based on Microstructure and Machine Learning [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(9): 1536-1548. |
[5] | Xiao-Yang Yi, Wei Liu, Yun-Fei Wang, Bo-Wen Huang, Xin-Jian Cao, Kui-Shan Sun, Xiao Liu, Xiang-Long Meng, Zhi-Yong Gao, Hai-Zhen Wang. Effect of Sn Content on the Microstructural Features, Martensitic Transformation and Mechanical Properties in Ti-V-Al-Based Shape Memory Alloys [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(8): 1247-1260. |
[6] | Solomon Kerealme Yeshanew, Chunguang Bai, Qing Jia, Tong Xi, Zhiqiang Zhang, Diaofeng Li, Zhizhou Xia, Rui Yang, Ke Yang. Influence of Hot-Rolling Deformation on Microstructure, Crystalline Orientation, and Texture Evolution of the Ti6Al4V-5Cu Alloy [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(8): 1261-1280. |
[7] | Minhao Li, Liwei Lu, Yuhui Wei, Min Ma, Weiying Huang. Deformation Behavior and Microstructure Evolution of AZ31 Mg Alloy by Forging-Bending Repeated Deformation with Multi-pass Lowered Temperature [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(8): 1317-1335. |
[8] | Wenhe Li, Wenshuang Gu, Yuqiu Chen, Jun Gong, Zhiliang Pei, Chao Sun. Microstructure, Mechanical, and Tribological Properties of Amorphous WB2/Ti Multilayer Coatings [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(8): 1385-1396. |
[9] | Zhenbo Zuo, Rui Hu, Xian Luo, Qingxiang Wang, Chenxi Li, Zhen Zhu, Jian Lan, Shujin Liang, Hongkui Tang, Kang Zhang. Solidification Behavior and Microstructures Characteristics of Ti-48Al-3Nb-1.5Ta Powder Produced by Supreme-Speed Plasma Rotating Electrode Process [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(8): 1221-1234. |
[10] | Rongjian Shi, Yanqi Tu, Liang Yang, Saiyu Liu, Shani Yang, Kewei Gao, Xu-Sheng Yang, Xiaolu Pang. Interactions between Pre-strain and Dislocation Structures and Its Effect on the Hydrogen Trapping Behaviors [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1193-1202. |
[11] | Yue-Yang Gu, Han-Yu Zhao, Wei Chen, Wei Yan, Liang-Yin Xiong, De-Min Chen. Effects of Hydrogen Charging on Mechanical Properties of CLAM Steel at Different Strain Rates [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1203-1210. |
[12] | Zhenyu Feng, Hong Zhong, Bin Yang, Xin Li, Shuangming Li. Improved Hydrogen Storage Properties of Ti23V40Mn37 Alloy Doped with Zr7Ni10 by Rapid Solidification [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1211-1219. |
[13] | Guohao Zhang, Zhiwei Hao, Meng Wang, Xufei Lu, Zhuang Zhao, Qian Wang, Xin Lin, Jing Chen, Weidong Huang. Globularization Mechanism and Near Isotropic Properties in Subcritical Heat-Treated Ti6Al4V Fabricated by Directed Energy Deposition [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(6): 937-948. |
[14] | Jinyang Liu, Jian Chen, Yang Lu, Xin Deng, Shanghua Wu, Zhongliang Lu. WC Grain Growth Behavior During Selective Laser Melting of WC-Co Cemented Carbides [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(6): 949-961. |
[15] | Hui Jiang, Li Li, Jianming Wang, Chengbin Wei, Qiang Zhang, Chunjian Su, Huaiming Sui. Wear Properties of Spark Plasma-Sintered AlCoCrFeNi2.1 Eutectic High Entropy Alloy with NbC Additions [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(6): 987-998. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||