Acta Metallurgica Sinica (English Letters) ›› 2022, Vol. 35 ›› Issue (2): 317-325.DOI: 10.1007/s40195-021-01253-x
Previous Articles Next Articles
Yong Wen1, Yan-Fei Wang1(), Hao Ran1, Wei Wei1, Jun-Ming Zhang1, Chong-Xiang Huang1(
)
Received:
2020-12-24
Revised:
2021-03-08
Accepted:
2021-03-27
Online:
2022-02-10
Published:
2021-06-01
Contact:
Yan-Fei Wang,Chong-Xiang Huang
About author:
Chong-Xiang Huang, chxhuang@scu.edu.cnYong Wen, Yan-Fei Wang, Hao Ran, Wei Wei, Jun-Ming Zhang, Chong-Xiang Huang. Improving the Mechanical and Tribological Properties of NiTi Alloys by Combining Cryo-Rolling and Post-Annealing[J]. Acta Metallurgica Sinica (English Letters), 2022, 35(2): 317-325.
Add to citation manager EndNote|Ris|BibTeX
Ti | Ni | Co | Cu | Cr | Nb | Fe | C | O + N | H |
---|---|---|---|---|---|---|---|---|---|
Bal | 55.82 | < 0.010 | < 0.005 | < 0.005 | < 0.010 | 0.019 | 0.010 | 0.039 | 0.001 |
Table 1 Chemical compositions of the NiTi alloy (wt%)
Ti | Ni | Co | Cu | Cr | Nb | Fe | C | O + N | H |
---|---|---|---|---|---|---|---|---|---|
Bal | 55.82 | < 0.010 | < 0.005 | < 0.005 | < 0.010 | 0.019 | 0.010 | 0.039 | 0.001 |
Fig. 1 Effects of the cryo-rolling and post-annealing on the transformation temperature and enthalpy: a DSC cooling and heating curves of the NiTi samples, b comparison in the phase transformation temperature (Ms, As) and the enthalpy change (△HM→A, △HA→M)
Sample | Temperature | Ms (°C) | Mf (°C) | As (°C) | Af (°C) | A* (°C) | M* (°C) | △HM→A (J/g) | △HA→M (J/g) |
---|---|---|---|---|---|---|---|---|---|
CG | 25 | - 20.2 ± 0.3 | - 45.5 ± 0.4 | - 18.4 ± 0.3 | 8.3 ± 0.4 | - 1.2 ± 0.2 | - 27.8 ± 0.5 | 1.8766 | 1.4211 |
LNR | 400 | 32.1 ± 0.1 | - 20.3 ± 0.4 | - 12.6 ± 0.2 | 36.4 ± 0.3 | 19.4 ± 0.3 | 9.3 ± 0.2 | 3.6138 | 3.0945 |
500 | - 5.3 ± 0.5 | - 30.7 ± 0.5 | - 20.2 ± 0.4 | - 1.3 ± 0.2 | - 10.3 ± 0.4 | - 18.3 ± 0.5 | 3.1798 | 1.7998 | |
600 | - 29.4 ± 0.3 | - 48.5 ± 0.6 | - 20.4 ± 0.2 | 0.1 ± 0.2 | - 9.2 ± 0.4 | - 33.4 ± 0.6 | 1.7764 | 1.0935 |
Table 2 Transformation temperature and enthalpy obtained by DSC measurements
Sample | Temperature | Ms (°C) | Mf (°C) | As (°C) | Af (°C) | A* (°C) | M* (°C) | △HM→A (J/g) | △HA→M (J/g) |
---|---|---|---|---|---|---|---|---|---|
CG | 25 | - 20.2 ± 0.3 | - 45.5 ± 0.4 | - 18.4 ± 0.3 | 8.3 ± 0.4 | - 1.2 ± 0.2 | - 27.8 ± 0.5 | 1.8766 | 1.4211 |
LNR | 400 | 32.1 ± 0.1 | - 20.3 ± 0.4 | - 12.6 ± 0.2 | 36.4 ± 0.3 | 19.4 ± 0.3 | 9.3 ± 0.2 | 3.6138 | 3.0945 |
500 | - 5.3 ± 0.5 | - 30.7 ± 0.5 | - 20.2 ± 0.4 | - 1.3 ± 0.2 | - 10.3 ± 0.4 | - 18.3 ± 0.5 | 3.1798 | 1.7998 | |
600 | - 29.4 ± 0.3 | - 48.5 ± 0.6 | - 20.4 ± 0.2 | 0.1 ± 0.2 | - 9.2 ± 0.4 | - 33.4 ± 0.6 | 1.7764 | 1.0935 |
Sample | Annealing temperature ($^\circ{\rm C}$) | Yield plateau stress (MPa) | Ultimate strength (MPa) | Fracture elongation (%) |
---|---|---|---|---|
Initial CG | - | 528 ± 9 | 909 ± 17 | 25.1 ± 2.3 |
LNR | - | - | 1355 ± 20 | 22.1 ± 3.3 |
300 | - | 1381 ± 26 | 22.7 ± 3.1 | |
400 | 415 ± 7 | 1431 ± 21 | 22.7 ± 3.4 | |
500 | 417 ± 4 | 1210 ± 26 | 29.3 ± 4.2 | |
600 | 473 ± 6 | 882 ± 19 | 35.3 ± 2.7 |
Table 3 Mechanical properties of the initial CG sample and the samples treated by cryo-rolling and post-mortem annealing
Sample | Annealing temperature ($^\circ{\rm C}$) | Yield plateau stress (MPa) | Ultimate strength (MPa) | Fracture elongation (%) |
---|---|---|---|---|
Initial CG | - | 528 ± 9 | 909 ± 17 | 25.1 ± 2.3 |
LNR | - | - | 1355 ± 20 | 22.1 ± 3.3 |
300 | - | 1381 ± 26 | 22.7 ± 3.1 | |
400 | 415 ± 7 | 1431 ± 21 | 22.7 ± 3.4 | |
500 | 417 ± 4 | 1210 ± 26 | 29.3 ± 4.2 | |
600 | 473 ± 6 | 882 ± 19 | 35.3 ± 2.7 |
Sample | Wear parameters | ||
---|---|---|---|
Labels | Annealing temperature ($^\circ{\rm C}$) | Coefficient | Wearing capacity ($\times {10}^{6}$ μm3) |
CG | - | 0.68 ± 0.01 | 24.6 ± 0.3 |
LNR | 25 | 0.67 ± 0.02 | 20.2 ± 0.6 |
300 | 0.66 ± 0.01 | 22.1 ± 0.3 | |
400 | 0.66 ± 0.01 | 18.6 ± 0.5 | |
500 | 0.67 ± 0.02 | 21.2 ± -0.2 | |
600 | 0.68 ± 0.03 | 22.2 ± 0.5 |
Table 4 Friction coefficient and wear amount of samples
Sample | Wear parameters | ||
---|---|---|---|
Labels | Annealing temperature ($^\circ{\rm C}$) | Coefficient | Wearing capacity ($\times {10}^{6}$ μm3) |
CG | - | 0.68 ± 0.01 | 24.6 ± 0.3 |
LNR | 25 | 0.67 ± 0.02 | 20.2 ± 0.6 |
300 | 0.66 ± 0.01 | 22.1 ± 0.3 | |
400 | 0.66 ± 0.01 | 18.6 ± 0.5 | |
500 | 0.67 ± 0.02 | 21.2 ± -0.2 | |
600 | 0.68 ± 0.03 | 22.2 ± 0.5 |
Fig. 5 a Representative 3D height profile of the friction zone; b comparison in the cross-sectional height profile, i.e., the linear distribution through the center of 3D profile (along the dotted lines in Fig. 5a), among the initial CG, as-rolled and further annealed samples
Fig. 7 a An optical image showing the annealed CG, b-d)representative bright-field and dark-field TEM micrographs for the LNR sample. The red arrows indicate the dispersed martensite. The bule arrows indicate the dispersed twins formed during cold-rolling. Insets are the corresponding SAED pattern
Fig. 8 a-d Typical bright-field and dark-field TEM micrographs for the LNR-400 sample. Inserts are the corresponding SAED pattern. The red arrows indicate the dispersed martensite. The green arrows indicate the dispersed annealing twins
[1] |
K. Otsuka, X. Ren, Prog. Mater. Sci. 50, 511 (2005)
DOI URL |
[2] | D. Anatoly, A. Razov, Mater. Today: Pro. 4, 4861 (2017) |
[3] |
W.J. Buehler, J.V. Gilfrich, R.C. Wiley, J. Appl. Phys. 34, 1475 (1963)
DOI URL |
[4] |
J. Ševčíková, D. Bártková, M. Goldbergová, M. Kuběnová, J. Čermák, J. Frenzel, A. Weiser, A. Dlouhý, Appl. Sur. Sci. 427, 434 (2018)
DOI URL |
[5] |
R. Elisa, J. Manero, L. Bravo-Gonzalez, E. Espinar, F.J. Gil, Materials 9, 402 (2016)
DOI URL |
[6] | T. Han, S. Youhan, S.J. Park, Y.C. Kim, K.S. Lee, H.S. Kim, S.G. Yoon, D. Kim, J.H. Han,(2019). Mater. Sci. Eng. C (2019). https://doi.org/10.1016/j.msec.2018.12.072 |
[7] |
W. Hsu, E. Polatidis, M. Šmíd, S.V. Petegem, N. Casati, H.V. Swygenhoven, Acta Mater. 167, 149 (2019)
DOI URL |
[8] |
P. Świec, M. Zubko, Z. Lekston, D. Stróż, Acta Phys. Pol. A 130, 1081 (2016)
DOI URL |
[9] | P.K. Kumar, D.C. Lagoudas, Shape Memory Alloys (Springer, New York, 2008). |
[10] | T. Omori, Y. Sutou, J.J. Wang, R. Kainuma, K. Ishida, J. Phys. IV 112, 507 (2003) |
[11] |
Y.X. Tong, B. Guo, F. Chen, B. Tian, L. Li, Y.F. Zheng, E.A. Prokofiev, D.V. Gunderov, R.Z. Valiev, Scr. Mater. 67, 1 (2012)
DOI URL |
[12] |
S. Kucharski, N. Levintant-Zayonts, J. Luckner, Mater. Des. 56, 671 (2014)
DOI URL |
[13] |
A. Sinha, B. Mondal, P.P. Chattopadhyay, Mater. Sci. Eng. A 561, 338 (2013)
DOI URL |
[14] |
A. Sinha, B. Mondal, P.P. Chattopadhyay, Mater. Sci. Eng. A 561, 344 (2013)
DOI URL |
[15] |
S.K. Giri, M. Krishnan, U. Ramamurty, Mater. Sci. Eng. A 528, 363 (2010)
DOI URL |
[16] |
C. Elibol, M.F.X. Wagner, Mater. Sci. Eng. A 643, 194 (2015)
DOI URL |
[17] |
H. Fang, M.B. Wong, Y. Bai, R.R. Deng, Constr. Build. Mater. 101, 447 (2015)
DOI URL |
[18] |
T. Fukuda, M. Takahata, T. Kakeshita, T. Saburi, Mater. Trans. 42, 323 (2001)
DOI URL |
[19] |
W. Ko, S.B. Maisel, B. Grabowski, J.B. Jeon, J. Neugebauer, Acta Mater. 123, 90 (2017)
DOI URL |
[20] |
N. Levintant-Zayonts, L. Kwiatkowski, Z. Brzozowska, J. Swiatek, Acta Phys. Pol. A 132, 210 (2017)
DOI URL |
[21] |
Y.Q. Zhang, S.Y. Jiang, L. Hu, Y.L. Liang, Mater. Sci. Eng. A 559, 607 (2013)
DOI URL |
[22] |
C.H. Park, S.H. Han, S.W. Kim, J.K. Hong, T.H. Nam, J.T. Yeom, J. Alloy. Compd. 654, 379 (2016)
DOI URL |
[23] |
H. Shahmir, N.A. Mahmoud, Y. Huang, J.M. Jung, H.S. Kim, T.G. Langdon, Mater. Sci. Eng. A 734, 445 (2018)
DOI URL |
[24] |
J. Frenzel, A. Wieczorek, I. Opahle, B. Maaß, R. Drautz, G. Eggeler, Acta Mater. 90, 213 (2015)
DOI URL |
[25] |
T. Hu, C.L. Chu, L.H. Yin, Y.P. Pu, Y.S. Domg, C. Guo, X.B. Sheng, J.C. Chung, P.K. Chu, Trans. Nonferrous Met. Soc. China 16, 49 (2006)
DOI URL |
[26] |
A.K. Srivastava, D. Schryvers, J.V. Humbeeck, Intermetallics 15, 1538 (2007)
DOI URL |
[27] |
S.Y. Jiang, Y.Q. Zhang, L.H. Zhao, Y.F. Zheng, Intermetallics 32, 344 (2013)
DOI URL |
[28] | K. Tsuchiya, M. Inuzuka, D. Tomus, A. Hosokawa, H. Nakayama, K. Morii, Y. Todaka, M. Umemoto, Mater. Sci. Eng. A 438, 643 (2006) |
[29] |
D. Vojtěch, A. Michalcová, Key Eng. Mater. 465, 471 (2011)
DOI URL |
[30] | A.R. Pelton, S.M. Russell, S. Dicello, Phys. Metall. 55, 33 (2003) |
[31] |
V. Brailovski, S. Prokoshkin, K. Inaekyan, V. Demers, J. Alloy. Compd. 509, 2066 (2011)
DOI URL |
[32] |
X.B. Shi, Z.C. Hu, X.W. Hu, J.S. Zhang, L.S. Cui, Mater. Charact. 128, 184 (2017)
DOI URL |
[33] |
X.B. Shi, F.M. Guo, J.S. Zhang, H.L. Ding, L.S. Cui, J. Alloy. Compd. 688, 62 (2016)
DOI URL |
[34] |
M.L. Xia, P. Liu, Q.P. Sun, Mater. Lett. 211, 352 (2018)
DOI URL |
[35] |
S.C. Mao, H.X. Li, Y. Liu, Q.S. Deng, L.H. Wang, Y.F. Zhang, Z. Zhang, X.D. Han, J. Alloy. Compd. 579, 100 (2013)
DOI URL |
[36] |
T. Waitz, V. Kazykhanov, H.P. Karnthaler, Acta Mater. 52, 137 (2004)
DOI URL |
[37] |
R. Yang, W. Ma, C.J. Duan, Z.H. Yang, X.R. Zhang, T.M. Wang, Q.H. Wang, Tribol Int. 140, 105816 (2019)
DOI URL |
[38] |
Q.H. Sun, T.C. Hu, H.Z. Fan, Y.S. Zhang, L.T. Hu, Tribol. Int. 92, 136 (2015)
DOI URL |
[39] |
V. Mortazavi, M. Khonsari, J. Tribol-Trans. ASME 138, 041604 (2016)
DOI URL |
[40] |
X.L. Li, X.C. Chen, C.H. Zhang, J.B. Luo, Tribol. Int. 130, 43 (2019)
DOI URL |
[41] |
P. Šittnera, P. Sedlákb, H. Seiner, P. Sedmák, J. Pilcha, R. Delville, L. Heller, L. Kadeřávek, Prog. Mater. Sci. 98, 249 (2018)
DOI URL |
[42] | Y.X. Wang, R.B. Xu, S.M. Hu, F.Q. Tu, W.W. Jin, Wear 386, 218 (2017) |
[43] |
A.A. Misochenko, S.V. Chertovskikh, L.S. Shuster, V.V. Stolyarov, Tribol. Lett. 65, 1 (2017)
DOI URL |
[44] |
N. Levintant-Zayonts, G. Starzynski, M. Kopec, S. Kucharski, Tribol. Int. 137, 313 (2019)
DOI |
[45] | H. Nakayama, K. Tsuchiya, Z.G. Liu, M. Umemoto, K. Morii, T. Shimizu, Mater. Trans. 9, 1987 (2001) |
[46] |
W.N. Hsu, E. Polatidis, M. Smid, N. Casati, S.V. Petegem, H.V. Swygenhoven, Acta Mater. 144, 874 (2018)
DOI URL |
[47] |
N. Zotov, M. Pfund, E. Polatidis, A.F. Mark, E.J. Mittemeijer, Mater. Sci. Eng. A 682, 178 (2017)
DOI URL |
[48] |
B.B. He, W. Xu, M.X. Huang, Mater. Sci. Eng. A 609, 141 (2014)
DOI URL |
[49] |
W. Zhang, S Yamashita, H. Kita, Mater. Des. 190, 108528 (2020)
DOI URL |
[50] | S. Singh, S. Gangwar, S. Yadav, Mater. Today: Pro. 4, 5583 (2017) |
[51] |
D.S. Prasad, C. Shoba, J. Mater. Res. Technol. 3, 172 (2014)
DOI URL |
[52] | M. Mehdi, K. Farokhzadeh, A. Edrisy, Wear 350, 10 (2016) |
[53] |
B. Katanchi, N. Choupani, J. Khalil-Allafi, M. Baghani, Mater. Sci. Eng. A 688, 202 (2017)
DOI URL |
[1] | Ying-Xi Li, Fan-Qiang Meng, Rui Yuan, Guo-Qiang Huang, Dong-Bai Sun. Devitrification of Al-Ce Amorphous Ribbon Investigated Using In situ High Energy X-ray Diffraction [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(1): 157-162. |
[2] | Guang Zeng, Shiqian Liu, Qinfen Gu, Zebang Zheng, Hideyuki Yasuda, Stuart D. McDonald, Kazuhiro Nogita. Investigation on the Solidification and Phase Transformation in Pb-Free Solders Using In Situ Synchrotron Radiography and Diffraction: A Review [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(1): 49-66. |
[3] | Jian-Bin Zhan, Yan-Jin Lu, Jin-Xin Lin. On the Martensitic Transformation Temperatures and Mechanical Properties of NiTi Alloy Manufactured by Selective Laser Melting: Effect of Remelting [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(9): 1223-1233. |
[4] | Hui-Hu Lu, Xing-Quan Shen, Wei Liang. Effect of Grain Size on the Precipitation Behaviour in Super-Ferritic Stainless Steels During a Long-Term Ageing [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(9): 1285-1295. |
[5] | Yi-Shuang Yu, Zhi-Quan Wang, Bin-Bin Wu, Jing-Xiao Zhao, Xue-Lin Wang, Hui Guo, Cheng-Jia Shang. Tailoring Variant Pairing to Enhance Impact Toughness in High-Strength Low-Alloy Steels via Trace Carbon Addition [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(6): 755-764. |
[6] | Bin-Bin Wu, Zhi-Quan Wang, Cheng-Jia Shang, Yi-Shuang Yu, Devesh Misra. Nucleation Analysis of Variant Transformed from Austenite with Σ3 Boundary in High-Strength Low-Alloy Steel [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 523-533. |
[7] | Meichen Liang, Hao Zhang, Lifeng Zhang, Peng Xue, Dingrui Ni, Weizhen Wang, Zongyi Ma, Hengqiang Ye, Zhiqing Yang. Evolution of Quasicrystals and Long-Period Stacking Ordered Structures During Severe Plastic Deformation and Mixing of Dissimilar Mg Alloys Upon Friction Stir Welding [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 12-24. |
[8] | Chengbo Yang, Jing Zhang, Meng Li, Xuejian Liu. Soft-Magnetic High-Entropy AlCoFeMnNi Alloys with Dual-Phase Microstructures Induced by Annealing [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1124-1134. |
[9] | Ibrahim Ondicho, Bernard Alunda, Dicken Owino, Luke Otieno, Melody Chepkoech. Revealing a Transformation-Induced Plasticity (TRIP) Phenomenon in a Medium-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1159-1165. |
[10] | Jia-Qi Zhao, Hua Tian, Zhong Wang, Xue-Jiao Wang, Jun-Wei Qiao. FCC-to-HCP Phase Transformation in CoCrNix Medium-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1151-1158. |
[11] | Lei-Lei Xing, Cong-Cong Zhao, Hao Chen, Zhi-Jian Shen, Wei Liu. Microstructure of a Ti-50 wt% Ta alloy produced via laser powder bed fusion [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 981-990. |
[12] | Yunhai Su, Xuewei Liang, Yunqi Liu, Zhiyong Dai. Effect of Ti Addition on the Microstructure and Property of FeAlCuCrNiMo0.6 High-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 957-967. |
[13] | P. F. Zhou, D. H. Xiao, T. C. Yuan. Microstructure, Mechanical and Corrosion Properties of AlCoCrFeNi High-Entropy Alloy Prepared by Spark Plasma Sintering [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 937-946. |
[14] | Hongduo Wang, Kuaishe Wang, Wen Wang, Yongxin Lu, Pai Peng, Peng Han, Ke Qiao, Zhihao Liu, Lei Wang. Microstructure and Mechanical Properties of Low-Carbon Q235 Steel Welded Using Friction Stir Welding [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(11): 1556-1570. |
[15] | Pei-Lin Zhang, Yu-Hong Zhao, Ruo-Peng Lu, Zhi-Bing Ding, Hua Hou. Microalloying Effect of Sn on Phase Transformation During Heat Treatment in Mg-Y-Zn-Zr Alloys [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(5): 550-558. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||