Acta Metallurgica Sinica (English Letters) ›› 2022, Vol. 35 ›› Issue (11): 1912-1924.DOI: 10.1007/s40195-022-01424-4
Previous Articles Next Articles
Yanqing Lai, Shi Chen, Xiaolei Ren, Yuanyuan Qiao, Ning Zhao()
Received:
2022-03-13
Revised:
2022-04-06
Accepted:
2022-04-13
Online:
2022-11-10
Published:
2022-06-01
Contact:
Ning Zhao, zhaoning@dlut.edu.cn
Yanqing Lai, Shi Chen, Xiaolei Ren, Yuanyuan Qiao, Ning Zhao. Solid-liquid Interdiffusion Bonding of Cu/Sn/Ni Micro-joints with the Assistance of Temperature Gradient[J]. Acta Metallurgica Sinica (English Letters), 2022, 35(11): 1912-1924.
Add to citation manager EndNote|Ris|BibTeX
Fig. 2 Schematics of the TG-SLID bonding configuration: a1 Ni as hot end and b1 Cu as hot end. a2, b2 the corresponding simulated temperature distribution in the liquid Sn layer
Fig. 3 a Cross-sectional microstructure of a Cu/Sn/Ni initial micro-joint, and b, c top morphology of the (Cu,Ni)6Sn5 at the Sn/Ni and Sn/Cu interfaces in a, respectively
Fig. 4 Cross-sectional microstructures of the Cu/Sn/Ni micro-joints after bonding for various durations: a1-a5 SLID bonding, b1-b5 TG-SLID bonding with Ni as hot end, c1-c5 TG-SLID bonding with Cu as hot end
Bonding time (min) | Position | Elemental content (at.%) | Phase type | ||
---|---|---|---|---|---|
Sn | Ni | Cu | |||
5 | A1 | 49.83 | 5.27 | 44.90 | (Cu0.89,Ni0.11)6Sn5 |
A2 | 42.33 | 3.06 | 54.61 | (Cu0.95,Ni0.05)6Sn5 | |
15 | A3 | 46.89 | 6.25 | 46.86 | (Cu0.88,Ni0.12)6Sn5 |
A4 | 44.10 | 3.50 | 52.41 | (Cu0.94,Ni0.06)6Sn5 | |
30 | A5 | 44.47 | 8.05 | 47.49 | (Cu0.86,Ni0.14)6Sn5 |
A6 | 45.05 | 4.13 | 50.82 | (Cu0.92,Ni0.08)6Sn5 | |
60 | A7 | 44.72 | 11.34 | 43.94 | (Cu0.80,Ni0.20)6Sn5 |
A8 | 45.29 | 5.61 | 49.11 | (Cu0.90,Ni0.10)6Sn5 | |
A9 | 43.87 | 5.40 | 51.73 | (Cu0.91,Ni0.09)6Sn5 |
Table 1 EPMA results of IMC compositions at the positions marked in Fig. 4(a1-a4)
Bonding time (min) | Position | Elemental content (at.%) | Phase type | ||
---|---|---|---|---|---|
Sn | Ni | Cu | |||
5 | A1 | 49.83 | 5.27 | 44.90 | (Cu0.89,Ni0.11)6Sn5 |
A2 | 42.33 | 3.06 | 54.61 | (Cu0.95,Ni0.05)6Sn5 | |
15 | A3 | 46.89 | 6.25 | 46.86 | (Cu0.88,Ni0.12)6Sn5 |
A4 | 44.10 | 3.50 | 52.41 | (Cu0.94,Ni0.06)6Sn5 | |
30 | A5 | 44.47 | 8.05 | 47.49 | (Cu0.86,Ni0.14)6Sn5 |
A6 | 45.05 | 4.13 | 50.82 | (Cu0.92,Ni0.08)6Sn5 | |
60 | A7 | 44.72 | 11.34 | 43.94 | (Cu0.80,Ni0.20)6Sn5 |
A8 | 45.29 | 5.61 | 49.11 | (Cu0.90,Ni0.10)6Sn5 | |
A9 | 43.87 | 5.40 | 51.73 | (Cu0.91,Ni0.09)6Sn5 |
Bonding time (min) | Position | Elemental content (at.%) | Phase type | ||
---|---|---|---|---|---|
Sn | Ni | Cu | |||
5 | B1 | 45.23 | 1.24 | 53.53 | (Cu0.98,Ni0.02)6Sn5 |
B2 | 45.65 | 8.73 | 45.62 | (Cu0.84,Ni0.16)6Sn5 | |
15 | B3 | 48.20 | 1.20 | 50.60 | (Cu0.98,Ni0.02)6Sn5 |
B4 | 45.18 | 11.57 | 43.26 | (Cu0.79,Ni0.21)6Sn5 | |
30 | B5 | 48.06 | 0.38 | 51.56 | (Cu0.99,Ni0.01)6Sn5 |
B6 | 45.29 | 9.22 | 45.48 | (Cu0.83,Ni0.17)6Sn5 | |
B7 | 46.38 | 13.94 | 39.68 | (Cu0.74,Ni0.26)6Sn5 | |
60 | B8 | 45.04 | 3.99 | 50.97 | (Cu0.93,Ni0.07)6Sn5 |
B9 | 45.55 | 11.52 | 42.92 | (Cu0.79,Ni0.21)6Sn5 | |
B10 | 47.95 | 14.86 | 37.19 | (Cu0.72,Ni0.28)6Sn5 |
Table 2 EPMA results of IMC compositions at the positions marked in Fig. 4b1-b4
Bonding time (min) | Position | Elemental content (at.%) | Phase type | ||
---|---|---|---|---|---|
Sn | Ni | Cu | |||
5 | B1 | 45.23 | 1.24 | 53.53 | (Cu0.98,Ni0.02)6Sn5 |
B2 | 45.65 | 8.73 | 45.62 | (Cu0.84,Ni0.16)6Sn5 | |
15 | B3 | 48.20 | 1.20 | 50.60 | (Cu0.98,Ni0.02)6Sn5 |
B4 | 45.18 | 11.57 | 43.26 | (Cu0.79,Ni0.21)6Sn5 | |
30 | B5 | 48.06 | 0.38 | 51.56 | (Cu0.99,Ni0.01)6Sn5 |
B6 | 45.29 | 9.22 | 45.48 | (Cu0.83,Ni0.17)6Sn5 | |
B7 | 46.38 | 13.94 | 39.68 | (Cu0.74,Ni0.26)6Sn5 | |
60 | B8 | 45.04 | 3.99 | 50.97 | (Cu0.93,Ni0.07)6Sn5 |
B9 | 45.55 | 11.52 | 42.92 | (Cu0.79,Ni0.21)6Sn5 | |
B10 | 47.95 | 14.86 | 37.19 | (Cu0.72,Ni0.28)6Sn5 |
Bonding time (min) | Position | Elemental content (at.%) | Phase type | ||
---|---|---|---|---|---|
Sn | Ni | Cu | |||
5 | C1 | 50.35 | 5.10 | 44.55 | (Cu0.90,Ni0.10)6Sn5 |
C2 | 49.35 | 1.11 | 49.54 | (Cu0.98,Ni0. 02)6Sn5 | |
10 | C3 | 46.54 | 5.07 | 48.39 | (Cu0.91,Ni0.09)6Sn5 |
C4 | 45.94 | 0.81 | 53.24 | (Cu0.99,Ni0.01)6Sn5 | |
20 | C5 | 49.51 | 3.68 | 46.81 | (Cu0.93,Ni0.07)6Sn5 |
C6 | 48.40 | 0.65 | 50.95 | (Cu0.99,Ni0.01)6Sn5 | |
30 | C7 | 44.46 | 2.96 | 52.58 | (Cu0.95,Ni0.05)6Sn5 |
C8 | 44.60 | 0.82 | 54.58 | (Cu0.99,Ni0.01)6Sn5 | |
C9 | 44.68 | 0.24 | 55.08 | Cu6Sn5 |
Table 3 EPMA results of IMC compositions at the positions marked in Fig. 4c1-c4
Bonding time (min) | Position | Elemental content (at.%) | Phase type | ||
---|---|---|---|---|---|
Sn | Ni | Cu | |||
5 | C1 | 50.35 | 5.10 | 44.55 | (Cu0.90,Ni0.10)6Sn5 |
C2 | 49.35 | 1.11 | 49.54 | (Cu0.98,Ni0. 02)6Sn5 | |
10 | C3 | 46.54 | 5.07 | 48.39 | (Cu0.91,Ni0.09)6Sn5 |
C4 | 45.94 | 0.81 | 53.24 | (Cu0.99,Ni0.01)6Sn5 | |
20 | C5 | 49.51 | 3.68 | 46.81 | (Cu0.93,Ni0.07)6Sn5 |
C6 | 48.40 | 0.65 | 50.95 | (Cu0.99,Ni0.01)6Sn5 | |
30 | C7 | 44.46 | 2.96 | 52.58 | (Cu0.95,Ni0.05)6Sn5 |
C8 | 44.60 | 0.82 | 54.58 | (Cu0.99,Ni0.01)6Sn5 | |
C9 | 44.68 | 0.24 | 55.08 | Cu6Sn5 |
Fig. 5 Cross-sectional EPMA mapping images of the Cu/IMC/Ni full IMC micro-joints: a SLID bonding for 120 min, b TG-SLID bonding for 120 min with Ni as hot end, c TG-SLID bonding for 60 min with Cu as hot end
Fig. 7 a1-c1 Micrographs of the full IMC micro-joints under three bonding conditions, a2-c2 corresponding phase maps, a3-c3 corresponding EBSD maps in RD
Position | Elemental content (at.%) | Phase type | ||
---|---|---|---|---|
Sn | Ni | Cu | ||
D1 | 40.03 | 14.31 | 45.66 | (Cu0.76,Ni0.24)6Sn5 |
D2 | 44.76 | 11.76 | 43.48 | (Cu0.79,Ni0.21)6Sn5 |
D3 | 45.43 | 7.12 | 47.45 | (Cu0.87,Ni0.13)6Sn5 |
D4 | 44.50 | 6.03 | 49.47 | (Cu0.89,Ni0.11)6Sn5 |
E1 | 44.76 | 4.05 | 51.19 | (Cu0.93,Ni0.07)6Sn5 |
E2 | 45.34 | 9.95 | 44.71 | (Cu0.82,Ni0.18)6Sn5 |
E3 | 45.15 | 9.28 | 45.57 | (Cu0.83,Ni0.17)6Sn5 |
E4 | 46.38 | 13.94 | 39.68 | (Cu0.74,Ni0.26)6Sn5 |
E5 | 45.48 | 17.15 | 37.37 | (Cu0.69,Ni0.31)6Sn5 |
F1 | 45.64 | 2.22 | 52.14 | (Cu0.96,Ni0.04)6Sn5 |
F2 | 45.79 | 0.45 | 53.77 | (Cu0.99,Ni0.01)6Sn5 |
F3 | 45.66 | 0.19 | 54.16 | Cu6Sn5 |
Table 4 EPMA results of IMC compositions at the positions marked in Fig. 7(a3-c3)
Position | Elemental content (at.%) | Phase type | ||
---|---|---|---|---|
Sn | Ni | Cu | ||
D1 | 40.03 | 14.31 | 45.66 | (Cu0.76,Ni0.24)6Sn5 |
D2 | 44.76 | 11.76 | 43.48 | (Cu0.79,Ni0.21)6Sn5 |
D3 | 45.43 | 7.12 | 47.45 | (Cu0.87,Ni0.13)6Sn5 |
D4 | 44.50 | 6.03 | 49.47 | (Cu0.89,Ni0.11)6Sn5 |
E1 | 44.76 | 4.05 | 51.19 | (Cu0.93,Ni0.07)6Sn5 |
E2 | 45.34 | 9.95 | 44.71 | (Cu0.82,Ni0.18)6Sn5 |
E3 | 45.15 | 9.28 | 45.57 | (Cu0.83,Ni0.17)6Sn5 |
E4 | 46.38 | 13.94 | 39.68 | (Cu0.74,Ni0.26)6Sn5 |
E5 | 45.48 | 17.15 | 37.37 | (Cu0.69,Ni0.31)6Sn5 |
F1 | 45.64 | 2.22 | 52.14 | (Cu0.96,Ni0.04)6Sn5 |
F2 | 45.79 | 0.45 | 53.77 | (Cu0.99,Ni0.01)6Sn5 |
F3 | 45.66 | 0.19 | 54.16 | Cu6Sn5 |
Materials | d (μm) | ρ (g/cm3) | Cp (J/kg K) | α (cm2/s) | r (mm2K/W) |
---|---|---|---|---|---|
(Cu,Ni)6Sn5 | 72.11 | 8.28 [31] | 286 [31] | 1.5 × 10-1 [31] | 2.03 |
Cu3Sn | 1.49 | 8.9 [31] | 326 [31] | 2.4 × 10-1 [31] | 0.02 |
Table 5 Parameters of IMCs in TG-SLID bonding with Cu as hot end
Materials | d (μm) | ρ (g/cm3) | Cp (J/kg K) | α (cm2/s) | r (mm2K/W) |
---|---|---|---|---|---|
(Cu,Ni)6Sn5 | 72.11 | 8.28 [31] | 286 [31] | 1.5 × 10-1 [31] | 2.03 |
Cu3Sn | 1.49 | 8.9 [31] | 326 [31] | 2.4 × 10-1 [31] | 0.02 |
Fig. 8 Schematics of atomic diffusion and distribution of Ni in the micro-joints: a SLID bonding, b TG-SLID bonding with Ni as hot end, c TG-SLID bonding with Cu as hot end
Fig. 9 Schematics of atomic diffusion fluxes and IMC evolution in the Cu/Sn/Ni micro-joints: a1-a3 SLID bonding, b1-b3 TG-SLID bonding with Ni as hot end, c1-c3 TG-SLID bonding with Cu as hot end
[1] |
K.N. Tu, Y.X. Liu, Mater. Sci. Eng. R 136, 1 (2019)
DOI URL |
[2] |
Y.Y. Qiao, H.T. Ma, F.Y. Yu, N. Zhao, Acta Mater. 217, 117168 (2021)
DOI URL |
[3] | Y. Chen, Z.Q. Gao, Z.Q. Liu, Acta Metall. Sin. -Engl. Lett. (2022). https://doi.org/10.1007/s40195-021-01357-4 |
[4] |
C.T. Ko, K.N. Chen, Microelectron. Reliab. 52, 302 (2012)
DOI URL |
[5] |
L. Arnaud, C. Karam, N. Bresson, C. Dubarry, S. Borel, M. Assous, G. Mauguen, F. Fournel, M. Gottardi, T. Mourier, MRS Commun. 10, 549 (2020)
DOI URL |
[6] |
Z.Y. Zhang, J.S. Chen, J.N. Wang, Y.Z. Han, Z.Y. Yu, Q.Z. Wang, P.L. Zhang, S.L. Yang, Weld. World 66, 973 (2022)
DOI URL |
[7] |
L. Sun, M.H. Chen, L. Zhang, P. He, L.S. Xie, J. Alloys Compd. 818, 152825 (2020)
DOI URL |
[8] |
C.T. Ko, K.N. Chen, Microelectron. Reliab. 53, 7 (2013)
DOI URL |
[9] |
Y. Zhong, N. Zhao, W. Dong, H.T. Ma, M.L. Huang, L.Q. Yin, C.P. Wong, J. Mater. Res. 32, 3128 (2017)
DOI URL |
[10] |
N.S. Bosco, F.W. Zok, Acta Mater. 52, 2965 (2004)
DOI URL |
[11] |
J.F. Li, P.A. Agyakwa, C.M. Johnson, Acta Mater. 58, 3429 (2010)
DOI URL |
[12] |
Y. Tian, H. Fang, N. Ren, Y.T. Zhao, B.L. Chen, F.S. Wu, K.W. Paik, J. Alloys Compd. 828, 154468 (2020)
DOI URL |
[13] |
Y.S. Chiu, H.Y. Yu, H.T. Hung, Y.W. Wang, C.R. Kao, Microelectron. Reliab. 95, 18 (2019)
DOI |
[14] |
J.W. Yoon, B.S. Lee, Thin Solid Films 660,618 (2018)
DOI URL |
[15] | Y.W. Chang, C.C. Hu, H.Y. Peng, Y.C. Liang, C. Chen, T.C. Chang, C.J. Zhan, J.Y. Juang, Sci. Rep. 8, 1 (2018) |
[16] |
Y.Q. Lai, S. Chen, X.L. Ren, Y.Y. Qiao, N. Zhao, Mater. Charact. 186, 111803 (2022)
DOI URL |
[17] |
N. Zhao, Y. Zhong, M.L. Huang, H.T. Ma, W. Dong, Sci. Rep. 5, 13491 (2015)
DOI PMID |
[18] |
J.N. Wang, J.S. Chen, Z.Y. Zhang, P.L. Zhang, Z.S. Yu, S.Y. Zhang, Solder. Surf. Mt. Technol. 34, 124 (2022)
DOI URL |
[19] |
H.Z. Wang, X.W. Hu, X.X. Jiang, Mater. Charact. 163, 110287 (2020)
DOI URL |
[20] |
Y.S. Huang, H.Y. Hsiao, C. Chen, K.N. Tu, Scr. Mater. 66, 741 (2012)
DOI URL |
[21] |
H.J. Dong, Z.L. Li, X.G. Song, H.Y. Zhao, H. Tian, J.H. Liu, J.C. Yan, Mater. Sci. Eng. A 705, 360 (2017)
DOI URL |
[22] |
K.D. Min, C.J. Lee, B.U. Hwang, J.H. Kim, J.H. Jang, S.B. Jung, Appl. Surf. Sci. 551, 149396 (2021)
DOI URL |
[23] |
L.P. Mo, C.W. Guo, Z. Zhou, F.S. Wu, C.Q. Liu, J. Mater. Sci. Mater. Electron. 29, 11920 (2018)
DOI URL |
[24] |
N. Zhao, Y. Zhong, M.L. Huang, W. Dong, H.T. Ma, Y.P. Wang, J. Alloys Compd. 682, 1 (2016)
DOI URL |
[25] |
N. Zhao, J.F. Deng, Y. Zhong, H.T. Ma, Y.P. Wang, C.P. Wong, J. Mater. Res. 32, 3555 (2017)
DOI URL |
[26] | T.L. Bergman, F.P. Incropera, D.P. DeWitt, A.S. Lavine, Fundamentals of Heat and Mass Transfer (Wiley, New York, 2011) |
[27] |
M.V. Peralta-Martinez, W.A. Wakeham, Int. J. Thermophys. 22, 395 (2001)
DOI URL |
[28] | S.J. Wang, C.Y. Liu, J. Electron. Mater. 32, 1303 (2003) |
[29] |
Y.Q. Lai, X.W. Hu, Y.L. Li, X.X. Jiang, J. Mater. Sci. Mater. Electron. 29, 11314 (2018)
DOI URL |
[30] | C.Y. Liu, J.T. Chen, Y.C. Chuang, L. Ke, S.J. Wang, Appl. Phys. Lett. 90, 112 (2007) |
[31] |
H. Frederikse, R. Fields, A. Feldman, J. Appl. Phys. 72, 2879 (1992)
DOI URL |
[32] |
F. Meydaneri, B. Saatçi, M. Özdemir, Fluid Phase Equilib 298,97 (2010)
DOI URL |
[33] |
C.W. Chang, S.C. Yang, C.T. Tu, C.R. Kao, J. Electron. Mater. 36, 1455 (2007)
DOI URL |
[34] | S.J. Wang, C.Y. Liu, J. Electron. Mater. 35, 1955 (2006) |
[35] |
K. Zeng, J.K. Kivilahti, J. Electron. Mater. 30, 35 (2001)
DOI URL |
[36] |
C.Y. Li, J.G. Duh, J. Mater. Res. 20, 3118 (2005)
DOI URL |
[37] |
G. Zeng, S.D. McDonald, D.K. Mu, Y. Terada, H. Yasuda, Q.F. Gu, K. Nogita, Intermetallics 54,20 (2014)
DOI URL |
[38] | F. Gao, T. Takemoto, H. Nishikawa, J. Electron. Mater. 35, 2081 (2006) |
[39] |
F. Gao, T. Takemoto, J. Alloys Compd. 421, 283 (2006)
DOI URL |
[40] |
C.Y. Yu, W.Y. Chen, J.G. Duh, Intermetallics 26,11 (2012)
DOI URL |
[41] |
K. Chu, Y. Sohn, C. Moon, Scr. Mater. 109, 113 (2015)
DOI URL |
[1] | Yi Wu, Long Zhang, Hongwei Zhang, Huameng Fu, Zhengwang Zhu, Hong Li, Aimin Wang, Haifeng Zhang. Wettability and Interfacial Reactions Between Metallic Glass Melts and Cu/Mo Used as Roller Materials for Twin-Roll Casting [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1221-1230. |
[2] | Yinbo Chen, Zhaoqing Gao, Zhi-Quan Liu. Temperature Gradient Induced Orientation Change of Bi Grains in Sn-Bi57-Ag0.7 Solder Joint [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1184-1194. |
[3] | Yingying Shen, Qing Jia, Xu Zhang, Ronghua Liu, Yumin Wang, Yuyou Cui, Rui Yang. Tensile Behavior of SiC Fiber-Reinforced γ-TiAl Composites Prepared by Suction Casting [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(7): 932-942. |
[4] | Xin-Yu Lv, An-Ping Dong, Jun Wang, Da Shu, Bao-De Sun. Influence Factors of Aluminum-Slag Interfacial Reaction Under Electric Field [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(8): 753-761. |
[5] | Y.J. Shi, H. Shen, Z.Q. Yao. NUMERICAL INVESTIGATION OF STRAIGHT-LINE LASER FORMING UNDER THE TEMPERATURE GRADIENT MECHANISM [J]. Acta Metallurgica Sinica (English Letters), 2006, 19(2): 144-150 . |
[6] | L. Q. Li; L. Y. Li and Z. Geng (National Key Laboratory of Advanced Welding Production Technology, HIT, Harbin 1500001, China). NUMERICAL SIMULATION OF PENETRATION PROCESS BASED ON THE VARIATION OF HEAT TRANSFER CONDITION [J]. Acta Metallurgica Sinica (English Letters), 2000, 13(1): 157-161. |
[7] | GUO Junqing GU Genda LI Qingchun Harbin Institute of Technology,Harbin,China. PARTITION RATIO AT SOLID-LIQUID INTERFACE UNDER INFLUENCE OF TEMPERATURE GRADIENT AND EXTERNAL FORCE FIELD [J]. Acta Metallurgica Sinica (English Letters), 1989, 2(12): 422-425. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||