Acta Metallurgica Sinica (English Letters) ›› 2020, Vol. 33 ›› Issue (7): 968-974.DOI: 10.1007/s40195-020-01006-2
Previous Articles Next Articles
Fushi Jiang1,2,3, Chang Pang4, Zhaoyang Zheng5, Qing Wang1, Jijun Zhao1, Chuang Dong1()
Received:
2019-08-09
Revised:
2019-11-22
Online:
2020-07-10
Published:
2020-07-10
Contact:
Chuang Dong
Fushi Jiang, Chang Pang, Zhaoyang Zheng, Qing Wang, Jijun Zhao, Chuang Dong. First-Principles Calculations for Stable β-Ti-Mo Alloys Using Cluster-Plus-Glue-Atom Model[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 968-974.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 Geometrical configuration of the cluster-plus-glue-atom model for BCC structure, centered by red atom Mo, and shelled by 14 Ti is a rhombic-dodecahedral cluster [Mo-Ti14]. The eight nearest neighbors are shown as green balls, and the six second nearest neighbors are shown as blue balls. The glue atoms locate at the next outer-shell of twelve atoms (gray balls). The Ti-Mo monotectoid alloy Ti88Mo12 is modeled as a [Mo-Ti14] cluster glued with one Mo atom (out of the 12 available gray sites), formulated as [Mo-Ti14]Mo = Ti14Mo2 = Ti87.5Mo12.5
Fig. 2 Parallelepiped super-cell unit satisfying the cluster formula [Mo-Ti14]Mo (monotectoid alloy), defined by linking the [Mo-Ti14] cluster center (red atoms, Mo) as the cell vertices. There is only one Mo glue atom (gray atoms) in the unit. The cluster shell atoms are represented by green and blue atoms
Central atom | Shell atom | Numbers | Radial distances (nm) |
---|---|---|---|
Moa | Ti | 8 | 0.245-0.269 |
Ti | 6 | 0.325-0.326 | |
Mo | 2 | 0.438 | |
Ti | 10 | 0.442-0.450 | |
Mob | Ti | 8 | 0.253-0.277 |
Ti | 6 | 0.323-0.327 | |
Ti | 12 | 0.433-0.456 | |
Tib | Mo | 2 | 0.271 |
Ti | 6 | 0.276-0.289 | |
Ti | 6 | 0.294-0.324 | |
Ti | 12 | 0.433-0.463 | |
Moc | Ti | 6 | 0.257-0.262 |
Mo | 2 | 0.280 | |
Ti | 6 | 0.319-0.321 | |
Ti | 12 | 0.433-0.442 | |
Tic1 | Mo | 1 | 0.258 |
Ti | 7 | 0.260-0.286 | |
Ti | 6 | 0.289-0.360 | |
Ti | 10 | 0.404-0.482 | |
Mo | 2 | 0.433-0.438 | |
Tic2 | Ti | 8 | 0.260-0.281 |
Ti | 6 | 0.320-0.328 | |
Ti | 10 | 0.437-0.445 | |
Mo | 2 | 0.441 |
Table 1 1st, 2nd and 3rd nearest neighbors of the central Mo atoms or Ti atoms in the configurations a, b, and c
Central atom | Shell atom | Numbers | Radial distances (nm) |
---|---|---|---|
Moa | Ti | 8 | 0.245-0.269 |
Ti | 6 | 0.325-0.326 | |
Mo | 2 | 0.438 | |
Ti | 10 | 0.442-0.450 | |
Mob | Ti | 8 | 0.253-0.277 |
Ti | 6 | 0.323-0.327 | |
Ti | 12 | 0.433-0.456 | |
Tib | Mo | 2 | 0.271 |
Ti | 6 | 0.276-0.289 | |
Ti | 6 | 0.294-0.324 | |
Ti | 12 | 0.433-0.463 | |
Moc | Ti | 6 | 0.257-0.262 |
Mo | 2 | 0.280 | |
Ti | 6 | 0.319-0.321 | |
Ti | 12 | 0.433-0.442 | |
Tic1 | Mo | 1 | 0.258 |
Ti | 7 | 0.260-0.286 | |
Ti | 6 | 0.289-0.360 | |
Ti | 10 | 0.404-0.482 | |
Mo | 2 | 0.433-0.438 | |
Tic2 | Ti | 8 | 0.260-0.281 |
Ti | 6 | 0.320-0.328 | |
Ti | 10 | 0.437-0.445 | |
Mo | 2 | 0.441 |
Structure | C11 | C12 | C44 | B | G | E |
---|---|---|---|---|---|---|
a | 208.4 | 121.1 | 31.8 | 150.2 | 36.1 | 100.4 |
b | 227.8 | 140.2 | 38.1 | 169.4 | 40.3 | 112.0 |
c | 206.5 | 119.2 | 41.0 | 148.3 | 42.0 | 115.2 |
Table 2 Calculated elastic stiffness coefficients (in GPa) for structure a, b and c
Structure | C11 | C12 | C44 | B | G | E |
---|---|---|---|---|---|---|
a | 208.4 | 121.1 | 31.8 | 150.2 | 36.1 | 100.4 |
b | 227.8 | 140.2 | 38.1 | 169.4 | 40.3 | 112.0 |
c | 206.5 | 119.2 | 41.0 | 148.3 | 42.0 | 115.2 |
[1] | A. van de Walle, P. Tiwary, M. de Jong, D.L. Olmsted, M. Asta, A. Dick, D. Shin, Y. Wang, L.Q. Chen, Z.K. Liu, CALPHAD 42, 13 (2013) |
[2] | L. Vitos, in Computational Quantum Mechanics for Materials Engineers: The EMTO Method and Applications (Springer, London, 2007) |
[3] | H.L. Hong, Q. Wang, C. Dong, P.K. Liaw, Sci. Rep. 4, 7065 (2014) |
[4] | D.D. Dong, Dissertation, Dalian University of Technology (2017) |
[5] | M. Niinomi, T. Hattori, K. Morikawa, T. Kasuga, A. Suzuki, H. Fukui, S. Niwa, Mater. Trans. 43, 2970 (2002) |
[6] | M. Geetha, A.K. Singh, R. Asokamani, A.K. Gogia, Prog. Mater Sci. 54, 397 (2009) |
[7] | Y.L. Hao, S.J. Li, S.Y. Sun, C.Y. Zheng, Q.M. Hu, R. Yang, Appl. Phys. Lett. 87, 091906 (2005) |
[8] | D.Q. Martins, W.R. Oso’rio, M.E.P. Souza, R. Caram, A. Garcia, Electrochim. Acta 53, 2809 (2008) |
[9] | L.J. Xu, Y.Y. Chen, J. Alloys Compd. 453, 320 (2008) |
[10] | M. Abdel-Hady, K. Hinoshita, M. Morinaga, Scr. Mater. 55, 477 (2006) |
[11] | P.J. Bania, in Beta Titanium Alloys in the 1990 s (TMS, Warrendale, 1993) |
[12] | E.W. Collings, in Physical Metallurgy of Titanium Alloys (ASM, Metals Park, 1984) |
[13] | Y. Zhang, Q. Wang, H.G. Dong, C. Dong, H.Y. Zhang, X.F. Sun, Acta Metall. Sin. (Engl. Lett.) 31, 127 (2018) |
[14] | C. Zhang, H. Tian, C.P. Hao, J.J. Zhao, Q. Wang, E.X. Liu, C. Dong, J. Matter. Sci. 48, 3138 (2013) |
[15] | C.P. Hao, Q. Wang, R.T. Ma, Y.M. Wang, J.B. Qiang, C. Dong, Acta Phys. Sin. 60, 116101 (2011) |
[16] | Q. Wang, C. Ji, Y.M. Wang, J.B. Qiang, C. Dong, Metall. Mater. Trans. A 44, 1872 (2013) |
[17] | B.B. Jiang, Q. Wang, D.H. Wen, F. Xu, G.Q. Chen, C. Dong, L. Sun, P.K. Liaw, Mater. Sci. Eng., A 687, 1 (2017) |
[18] | J. Singh, P. Singh, S. Rattan, S. Prakash, Phys. Rev. B 49, 932 (1994) |
[19] | H. Sharma, S. Prakash, Pramana 68, 655 (2007) |
[20] | C. Pang, B.B. Jiang, Y. Shi, Q. Wang, C. Dong, J. Alloys Compd. 652, 63 (2015) |
[21] | G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999) |
[22] | J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) |
[23] | G. Kresse, J. Furthmuller, Phys. Rev. B 54, 11169 (1996) |
[24] | H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976) |
[25] | J.M. Sanchez, F. Ducastelle, D. Gratias, Physica 128A, 334 (1984) |
[26] | A. van de Walle, G. Ceder, J. Phase Equilib. 23, 348 (2002) |
[27] | A. van de Walle, M. Asta, G. Ceder, CALPHAD 26, 539 (2002) |
[28] | Z.J. Wu, E.J. Zhao, H.P. Xiang, X.F. Hao, X.J. Liu, J. Meng, Phys. Rev. B 76, 054115 (2007) |
[29] | J.Y. Dai, J.M. Yuan, P. Giannozzi, Appl. Phys. Lett. 95, 232105 (2009) |
[1] | Yong Zhang, Zi-Ran Liu, Ding-Wang Yuan, Qin Shao, Jiang-Hua Chen, Cui-Lan Wu, Zao-Li Zhang. Elastic Properties and Stacking Fault Energies of Borides, Carbides and Nitrides from First-Principles Calculations [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(9): 1099-1110. |
[2] | Zhi-Wei Lai, Zhe-Yuan Huang, Chuan Pan, Hui-Qiao Du, Xiao-Guang Chen, Lei Liu, Wei-Ming Long, Gui-Sheng Zou. Rapid Ultrasonic-Assisted Soldering of AZ31B Mg Alloy/6061 Al Alloy with Low-Melting-Point Sn-xZn Solders Without Flux in Air [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(3): 332-342. |
[3] | Chong-Feng Sun, Sheng-Qi Xi, Yue Zhang, Xiao-Xue Zheng, Jing-En Zhou. Thermodynamic Characteristic and Phase Evolution in Immiscible Cr-Mo Binary Alloys [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(8): 1074-1081. |
[4] | Dongping TAO. Estimation of component activities in some oxide solid solutions by the molecular interaction vacancy model [J]. Acta Metallurgica Sinica (English Letters), 2011, 24(6): 432-442. |
[5] | Tingdong ZHOU, Zhengyun WANG, Jiangkang TANG, Haipeng LU. Structure and magnetic properties of Fe-based powders prepared by mechanical alloying [J]. Acta Metallurgica Sinica (English Letters), 2010, 23(5): 351-356. |
[6] | Shuhua LIANG,Xianhui WANG,Liang FANG,Zhikang FAN. Relationship between powder characteristic and internal oxidation of Al in Cu-Al pre-alloyed powders [J]. Acta Metallurgica Sinica (English Letters), 2009, 22(1): 71-80. |
[7] | Y.Z. Zhao*, Q. Gao , Y.C. Liu. CALCULATION OF THE DAMPING OF THE Zn-27Al ALLOY BASED ON THE MICRO INTERFACE SLIDING MODEL [J]. Acta Metallurgica Sinica (English Letters), 2006, 19(3): 228-234 . |
[8] | Y.Z. Yang, X.J. Bai, T.C. Kuang. EXAFS STUDY OF THE SHORT RANGE STRUCTURE OF NANOCRYSTALLINE BCC-Fe80Cu20 SOLID SOLUTION [J]. Acta Metallurgica Sinica (English Letters), 2002, 15(3): 307-311 . |
[9] | J.M Hu; J.X. Wu; H.M Meng; YR. Zhu; D.B. Sun and D.J. Yang(Beijing Corrosion and Protection Center, Open Laboratory of Corrosion, Erosion and Surface Technology,University of Science and Technology Beijing, Beijing 100083, China). INVESTIGATION OF SURFACE MORPHOLOGY, STRUCTURE AND ELECTROCATALYTIC PROPERTIES FOR O_2 EVOLUTION OF TITANIUM BASED IrO_2+Ta_2O_5 COATINGS [J]. Acta Metallurgica Sinica (English Letters), 2000, 13(3): 849-856. |
[10] | Y.M.Wang and L.X.Ding Department of material, School of Mechanical Engineering, Shenyang University, Shenyang 110044, China. IINFLUENCE OF HEAT TREATMENT TECHNOLOGY ON PROPERTY OF LOW COBALT Fe Cr Co PERMANENT MAGNETIC ALLOY [J]. Acta Metallurgica Sinica (English Letters), 1999, 12(5): 911-916. |
[11] | ZHAI Qijie HU Hanqi University of Science and Technology Beijing,China associate professor,Faculty of Foundry,University of Science and Technology Beijing,Beijing 100083,China. EFFECT OF NITROGEN ON MATRIX STRUCTURE OF GRAY CAST IRON [J]. Acta Metallurgica Sinica (English Letters), 1993, 6(6): 370-372. |
[12] | YANG Yuanzheng MA Xueming DONG Yuanda Institute of Solid State Physics,Academia sinica,Hefei,China Professor.Institute of Solid State Physics Academic Sinica,Hefei 230031,China. EXTENSION OF SOLID SOLUBILITY BY MECHANICAL ALLOYING IN Fe-Cu SYSTEM [J]. Acta Metallurgica Sinica (English Letters), 1993, 6(2): 92-95. |
[13] | ZHENG Yangzeng ZHANG Fucheng Yanshan University,Qinhuangdao,China. EFFECT OF HETEROGENEOUS DISTRIBUTION OF C AND ALLOYING ELEMENTS ON γ/α′ TRANSFORMATION IN A Fe-Mn-Cr-C ALLOY [J]. Acta Metallurgica Sinica (English Letters), 1991, 4(6): 467-470. |
[14] | HUANG Huimin CHEN Xinmin Central South University of Technology,Changsha,China HUANG Huimin Associate Professor,Department of Chemistry,Central South University of Technology,Changsha,China. METASTABLE CHARACTERISTICS OF β-W [J]. Acta Metallurgica Sinica (English Letters), 1989, 2(9): 184-188. |
[15] | WANG Wencai CHEN Yu Peking University,Beijing,China Associate Professor,Dept.of Physics,Peking University Beijing,China. SHORT-RANGE ORDER STRUCTURES OF Fe-Ge AMORPHOUS THIN FILMS [J]. Acta Metallurgica Sinica (English Letters), 1989, 2(10): 255-260. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||