Acta Metallurgica Sinica (English Letters) ›› 2016, Vol. 29 ›› Issue (1): 58-71.DOI: 10.1007/s40195-015-0362-1
Special Issue: 2016纳米材料专辑; 2016年钢铁材料专辑
• Article • Previous Articles Next Articles
R. Shashanka†, D. Chaira
Revised:
2016-01-04
Online:
2016-01-04
Published:
2016-01-20
R. Shashanka†, D. Chaira. Effects of Nano-Y2O3 and Sintering Parameters on the Fabrication of PM Duplex and Ferritic Stainless Steels[J]. Acta Metallurgica Sinica (English Letters), 2016, 29(1): 58-71.
Add to citation manager EndNote|Ris|BibTeX
Fig.1 SEM images of duplex a and ferritic b stainless steel milled for 10 h; similarly EDS of duplex c and ferritic d stainless steel powders milled for 10 h in DDPM
Fig.3 XRD spectra of duplex a, ferritic b stainless steel, yttria-dispersed duplex c and yttria-dispersed ferritic d stainless steel samples sintered at 1000, 1200 and 1400°C in argon atmosphere
Fig.4 Optical microstructure of duplex a, ferritic b stainless steel, yttria-dispersed duplex c and yttria-dispersed ferritic d stainless steel samples sintered at 1000, 1200 and 1400°C in argon atmosphere (P Pores)
Fig.6 Effect of indentation load (98, 245 and 490 mN) on Vickers microhardness of duplex a, ferritic b stainless steel, yttria-dispersed duplex c and yttria-dispersed ferritic d stainless steel samples sintered at 1000, 1200 and 1400°C in argon atmosphere
Fig.7 Compressive stress-strain curves of the yttria-dispersed and yttria-free duplex and ferritic stainless steel samples sintered at 1000°C in argon atmosphere
Sample | Sintering temperature (°C) | Volume fraction (%) | Theoretical density (g/mL) | Sintered density (%) | Vickers microhardness (HV) | Compressive strength (MPa) | |
---|---|---|---|---|---|---|---|
Austenite phase | Ferrite phase | ||||||
Duplex stainless steel | 1000 | 51 | 49 | 7.84 | 71.05 | 257 | 312 |
1200 | 62 | 38 | 85.55 | 451 | |||
1400 | 65 | 35 | 90.56 | 567 | |||
Ferritic stainless steel | 1000 | 33 | 67 | 7.75 | 72.5 | 192 | 225 |
1200 | 44 | 56 | 88.08 | 224 | |||
1400 | 58 | 42 | 93.12 | 265 | |||
Yttria-dispersed duplex stainless steel | 1000 | 57 | 43 | 7.80 | 77.81 | 332 | 360 |
1200 | 65 | 35 | 90.6 | 495 | |||
1400 | 72 | 27 | 94.28 | 576 | |||
Yttria-dispersed ferritic stainless steel | 1000 | 41 | 58 | 7.70 | 79.99 | 205 | 308 |
1200 | 52 | 48 | 91.23 | 282 | |||
1400 | 62 | 38 | 96.05 | 341 |
Table 1 Volume fractions, density and hardness of the austenite and ferrite phases of stainless steel samples sintered in argon atmosphere at different sintering temperature
Sample | Sintering temperature (°C) | Volume fraction (%) | Theoretical density (g/mL) | Sintered density (%) | Vickers microhardness (HV) | Compressive strength (MPa) | |
---|---|---|---|---|---|---|---|
Austenite phase | Ferrite phase | ||||||
Duplex stainless steel | 1000 | 51 | 49 | 7.84 | 71.05 | 257 | 312 |
1200 | 62 | 38 | 85.55 | 451 | |||
1400 | 65 | 35 | 90.56 | 567 | |||
Ferritic stainless steel | 1000 | 33 | 67 | 7.75 | 72.5 | 192 | 225 |
1200 | 44 | 56 | 88.08 | 224 | |||
1400 | 58 | 42 | 93.12 | 265 | |||
Yttria-dispersed duplex stainless steel | 1000 | 57 | 43 | 7.80 | 77.81 | 332 | 360 |
1200 | 65 | 35 | 90.6 | 495 | |||
1400 | 72 | 27 | 94.28 | 576 | |||
Yttria-dispersed ferritic stainless steel | 1000 | 41 | 58 | 7.70 | 79.99 | 205 | 308 |
1200 | 52 | 48 | 91.23 | 282 | |||
1400 | 62 | 38 | 96.05 | 341 |
Reference | Composition | Powder preparation | Processing method | Density (%) | Vickers microhardness (HV) | Yield stress (MPa) |
---|---|---|---|---|---|---|
[ | Ni-20Cr-1.2Y2O3 | SPEX 8000 M shaker mill for 2 h | SPS at 1100°C for 30 min | 99.55 | 472 | 1286 |
[ | AISI 304L | Equal channel angular pressing at 700°C | 225 | 652 | ||
[ | Fe-18Cr-8Mn-0.9 N | High-energy shaker mill for 144 h under nitrogen gas | Conventional sintering at 1100°C for 30 h | 87.3 | 324 | 270 |
[ | 74Fe-18Cr-8Mn | High-energy shaker mill for 120 h under nitrogen gas | Conventional sintering at 1100°C for 20 h | 83.1 | 495 | 390 |
[ | 316L SS | Gas atomization | Direct laser deposition method using 1 kW Nd: YAG laser | 215 | 408 | |
[ | Fe-17Cr-10Mn-3Mo-0.4Si-0.5 N-0.2C | Planetary ball mill for 48 h under argon gas | Conventional sintering at 1050°C for 1 h and water quenched | 542 | ||
[Present paper] | Fe-18Cr-13Ni | Dual-drive planetary mill for 10 h under toluene | Conventional sintering at 1000°C for 1 h in argon atmosphere | 71.05 | 257 | 312 |
Table 2 Composition, preparation, processing methods, density, microhardness and yield stress of stainless steels investigated by different authors
Reference | Composition | Powder preparation | Processing method | Density (%) | Vickers microhardness (HV) | Yield stress (MPa) |
---|---|---|---|---|---|---|
[ | Ni-20Cr-1.2Y2O3 | SPEX 8000 M shaker mill for 2 h | SPS at 1100°C for 30 min | 99.55 | 472 | 1286 |
[ | AISI 304L | Equal channel angular pressing at 700°C | 225 | 652 | ||
[ | Fe-18Cr-8Mn-0.9 N | High-energy shaker mill for 144 h under nitrogen gas | Conventional sintering at 1100°C for 30 h | 87.3 | 324 | 270 |
[ | 74Fe-18Cr-8Mn | High-energy shaker mill for 120 h under nitrogen gas | Conventional sintering at 1100°C for 20 h | 83.1 | 495 | 390 |
[ | 316L SS | Gas atomization | Direct laser deposition method using 1 kW Nd: YAG laser | 215 | 408 | |
[ | Fe-17Cr-10Mn-3Mo-0.4Si-0.5 N-0.2C | Planetary ball mill for 48 h under argon gas | Conventional sintering at 1050°C for 1 h and water quenched | 542 | ||
[Present paper] | Fe-18Cr-13Ni | Dual-drive planetary mill for 10 h under toluene | Conventional sintering at 1000°C for 1 h in argon atmosphere | 71.05 | 257 | 312 |
Fig.8 XRD spectra of duplex a, ferritic stainless steel b, Yttria-dispersed duplex c, Yttria-dispersed ferritic stainless steel d samples sintered at 1000°C in nitrogen atmosphere
Fig.9 Optical microstructures of duplex a, ferritic stainless steel b, yttria-dispersed duplex c and yttria-dispersed ferritic stainless steel d samples sintered at 1000°C in nitrogen atmosphere (P pores)
Fig.10 Phase analysis of duplex a, ferritic stainless steel b, yttria-dispersed duplex c and yttria-dispersed ferritic stainless steel d samples sintered at 1000°C in nitrogen atmosphere (ferrite—blue, austenite—green, chromium nitride—red)
Fig.11 Curves of sintered density (argon and nitrogen) a and Vickers microhardness b of stainless steel samples sintered at 1000°C in nitrogen atmosphere
Sample | Volume fraction (%) | Theoretical density (g/mL) | Sintered density (%) | Vickers microhardness (HV) | ||
---|---|---|---|---|---|---|
Austenite phase | Ferrite phase | Cr2N | ||||
Duplex stainless steel | 63 | 28 | 8 | 7.84 | 74 | 314 |
Ferritic stainless steel | 40 | 58 | 2 | 7.75 | 77 | 200 |
Yttria-dispersed duplex stainless steel | 79 | 7 | 13 | 7.80 | 80 | 400 |
Yttria-dispersed ferritic stainless steel | 45 | 35 | 18 | 7.70 | 82 | 253 |
Table 3 Volume fractions, density and hardness of austenite, ferrite and chromium nitride phases of yttria-dispersed and yttria-free stainless steel samples sintered in nitrogen atmosphere at 1000°C
Sample | Volume fraction (%) | Theoretical density (g/mL) | Sintered density (%) | Vickers microhardness (HV) | ||
---|---|---|---|---|---|---|
Austenite phase | Ferrite phase | Cr2N | ||||
Duplex stainless steel | 63 | 28 | 8 | 7.84 | 74 | 314 |
Ferritic stainless steel | 40 | 58 | 2 | 7.75 | 77 | 200 |
Yttria-dispersed duplex stainless steel | 79 | 7 | 13 | 7.80 | 80 | 400 |
Yttria-dispersed ferritic stainless steel | 45 | 35 | 18 | 7.70 | 82 | 253 |
[1] | R. Shashanka, D. Chaira, B.E. Int. J. Sci. Eng. Res. 6, 1863(2015) |
[2] | C. Petterson, S. Fager, Welding practice for the sandvik duplex stainless steels SAF2304, SAF2205 and SAF2507, vol. S811(AB Sandvik Steel, Sweden, 1995), p. 1 |
[3] | W.F. Smith, McGraw Hill, 1981) |
[4] | Y.Q. Wang, B. Yang, J. Han, F. Dong, Y.L. Wang, Pro. Eng. 36, 88(2012) |
[5] | R. Shashanka, D. Chaira, B.E. Int. J. Electrochem. Sci. 10, 5586(2015) |
[6] | H. Miyamoto, T. Mirnaki, S. Hashimoto, Mater. Sci. Eng. A 319, 779 (2001) |
[7] | T. Liang, X. Hu, X. Kang, D. Li, Acta Metall. Sin. (Engl. Lett.) 26, 517(2013) |
[8] | L.A. Dobrzanski, Z. Brytan, M. Actis Grande, M. Rosso, Arch. Mater. Sci. Eng. 28, 217(2007) |
[9] | X. Li, J. Shu, L. Chen, H. Bi, Acta Metall. Sin. (Engl. Lett.) 27, 501(2014) |
[10] | C. Suryanarayana, Prog. Mater. Sci. 46, 1(2001) |
[11] | R. Shashanka, D. Chaira, Powder Technol. 259, 125(2014) |
[12] | S. Balaji, A. Upadhyaya, Mater. Chem. Phys. 101, 310(2007) |
[13] | R. Liu, D.Y. Li, J. Mater. Sci. 35, 633(2000) |
[14] | E.J. Felten, J. Electrochem. Soc. 108, 490(1961) |
[15] | C.S. Wukusick, J.F. Collins, Mater. Res. Stand. 4, 637(1964) |
[16] | J.M. Francis, W.H. Whitlow, Corros. Sci. 5, 701(1965) |
[17] | S.L. Li, B.Y. Huang, Y.M. Li, S.Q. Liang, D.X. Li, J.L. Fan, J. Cent. South. Univ. Technol. 10, 1(2003) |
[18] | U. Lindstedt, B. Karlsson, J. Powder Metall. 41, 261(1998) |
[19] | Naci Kurgan, Mater. Des. 52, 995(2013) |
[20] | F. Martin, C. Garcia, Y. Blanco, Mater. Sci. Eng. A 528, 8500 (2011) |
[21] | S. Pandya, K.S. Ramakrishna, A.R. Annamalai, A. Upadhyaya, Mater. Sci. Eng. A 556, 271 (2012) |
[22] | K. Vijayalakshmi, V. Muthupandi, R. Jayachitra, Mater. Sci. Eng. A 529, 447 (2011) |
[23] | R. Shashanka, D. Chaira, Mater. Charact. 99, 220(2015) |
[24] | R. Shashanka, D. Chaira, Powder Technol. 278, 35(2015) |
[25] | S. Gupta, R. Shashanka, D. Chaira, IOP Conf. Ser. Mater. Sci. Eng. 75, 012033(2015) |
[26] | M. Metikos-Hukovic, R. Babic, Z. Grubac, Z. Petrovic, N. Lajci, Corros. Sci. 53, 2176 (2011) |
[27] | M. Gojic, A. Nagode, B. Kosec, S. Kozuh, S. Savli, T. Holjevac Grguric, L. Kosec, Eng. Fail. Anal. 18, 2330(2011) |
[28] | R.M. German, New York, 1996) |
[29] | K.S. Hwang, R.M. German, F.V. Lenel, Metall. Trans. 18A, 11(1987) |
[30] | R.M. German, Inter. J. Powder Met. 26, 23(1990) |
[31] | S.M. Tiwari, S. Balaji, A. Upadhyaya, Mater. Sci. Eng. A 492, 60 (2008) |
[32] | J. Jain, A.M. Kar, A. Upadhyaya, Mater. Lett. 58, 2037 (2004) |
[33] | D.Y. Ye, Mater. Chem. Phys. 93, 495(2005) |
[34] | I. Manika, J. Maniks, Acta Mater. 54, 2049 (2006) |
[35] | J.H. Gong, J.J. Wu, Z.D. Guan, J. Eur. Ceram. Soc. 9, 2625(1999) |
[36] | H. Buckle, in The Science of Hardness Testing and Its Research Application, ed. by J.H. Westbrook, H. Conrad, (ASM, Metal Park, 1973). p. 453 |
[37] | G.M. Pharr, E.G. Herbert, Y. Gao, Annu. Rev. Mater. Res. 40, 271(2010) |
[38] | B.W. Mott, London, 1957) |
[39] | H. Buckle, Metall. Rev. 4, 49(1959) |
[40] | N. Gane, Proc. R. Soc. Lond. Ser. A 317, 367 (1970) |
[41] | G.P. Upit, S.A. Varchenya, The size effect in the hardness of single crystals, in The Science of Hardness Testing and Its Research Applications, vol.10, ed. by J.H. Westbrook, H. Conrad(ASM, Metals Park, 1973), p. 135 |
[42] | C.C. Chen, A.A. Hendrickson, Microhardness phenomena in silver, in The Science of Hardness Testing and Its Research Applications, vol.21, ed. by J.H. Westbrook, H. Conrad(ASM, Metals Park, 1973), p. 274 |
[43] | S. Pasebani, A.K. Dutt, J. Burns, I. Charit, R.S. Mishra, Mater. Sci. Eng. A 630, 155 (2015) |
[44] | S. Qu, C.X. Huang, Y.L. Gao, G. Yang, S.D. Wu, Q.S. Zang, Z.F. Zhang, Mater. Sci. Eng. A 475, 207 (2008) |
[45] | E. Salahinejad, R. Amini, M. Marasi, M.J. Hadianfard, Mater. Des. 31, 527(2010) |
[46] | E. Salahinejad, R. Amini, M.J. Hadianfard, Mater. Sci. Eng. A 527, 5522 (2010) |
[47] | A. Yadollahi, N. Shamsaei, S.M. Thompson, D.W. Seely, Mater. Sci. Eng. A 644, 171 (2015) |
[48] | M. Javanbakht, M.J. Hadianfard, E. Salahinejad, J. Alloys Compd. 624, 17(2015) |
[49] | F. Tehrani, M.H. Abbasi, M.A. Golozar, M. Panjepour, Mater. Sci. Eng. A 528, 3961 (2011) |
[50] | R. Mariappan, S. Kumaran, T. Srinivasa, Rao. Mater. Sci. Eng. A 517, 328 (2009) |
[51] | J. Abenojar, F. Velasco, A. Bautista, M. Campos, J.A. Bas, J.M. Torralba, Compos. Sci. Technol. 63, 69(2003) |
[52] | E. Salahinejad, R. Amini, M.J. Hadianfard, Mater. Des. 31, 2241(2010) |
close | |
53 | Click to get updates and verify authenticity. |
[1] | S. Bi, B. L. Xiao, Z. H. Ji, B. S. Liu, Z. Y. Liu, Z. Y. Ma. Dispersion and Damage of Carbon Nanotubes in Carbon Nanotube/7055Al Composites During High-Energy Ball Milling Process [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 196-204. |
[2] | L. B. Tong, J. H. Chu, D. N. Zou, Q. Sun, S. Kamado, H. G. Brokmeier, M. Y. Zheng. Simultaneously Enhanced Mechanical Properties and Damping Capacities of ZK60 Mg Alloys Processed by Multi-Directional Forging [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 265-277. |
[3] | Chun-Hua Ma, Fu-Sheng Pan, Ding-Fei Zhang, Ai-Tao Tang, Zhi-Wen Lu. Effects of Sb Addition on Microstructural Evolution and Mechanical Properties of Mg-9Al-5Sn Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 278-288. |
[4] | Ping Deng, En-Hou Han, Qunjia Peng, Chen Sun. Corrosion Behavior and Mechanism of Irradiated 304 Nuclear Grade Stainless Steel in High-Temperature Water [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 174-186. |
[5] | Xi Zhao, Fa-Fa Yan, Zhi-Min Zhang, Peng-Cheng Gao, Shu-Chang Li. Influence of Heat Treatment on Precipitation Behavior and Mechanical Properties of Extruded AZ80 Magnesium Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 54-64. |
[6] | Hua-Ping Tang, Qu-Dong Wang, Colin Luo, Chuan Lei, Tian-Wen Liu, Zhong-Yang Li, Kui Wang, Hai-Yan Jiang, Wen-Jiang Ding. Effects of Solution Treatment on the Microstructure, Tensile Properties, and Impact Toughness of an Al-5.0Mg-3.0Zn-1.0Cu Cast Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 98-110. |
[7] | Meichen Liang, Hao Zhang, Lifeng Zhang, Peng Xue, Dingrui Ni, Weizhen Wang, Zongyi Ma, Hengqiang Ye, Zhiqing Yang. Evolution of Quasicrystals and Long-Period Stacking Ordered Structures During Severe Plastic Deformation and Mixing of Dissimilar Mg Alloys Upon Friction Stir Welding [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 12-24. |
[8] | Jinglin Liu, Qi Song, Lihui Song, Shude Ji, Mingshen Li, Zhen Jia, Kang Yang. A Novel Friction Stir Spot Riveting of Al/Cu Dissimilar Materials [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 135-144. |
[9] | Lin-Yue Jia, Wen-Bo Du, Jin-Long Fu, Zhao-Hui Wang, Ke Liu, Shu-Bo Li, Xian Du. Obtaining Ultra-High Strength and Ductility in a Mg-Gd-Er-Zn-Zr Alloy via Extrusion, Pre-deformation and Two-Stage Aging [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 39-44. |
[10] | Tianbo Zhao, Yutaka S. Sato, Hiroyuki Kokawa, Kazuhiro Ito. Predicting Tensile Properties of Friction-Stir-Welded 6063 Aluminum with Experimentally Measured Welding Heat Input [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1235-1242. |
[11] | Dan-Yang Liu, Jin-Feng Li, Yong-Cheng Lin, Peng-Cheng Ma, Yong-Lai Chen, Xu-Hu Zhang, Rui-Feng Zhang. Cu/Li Ratio on the Microstructure Evolution and Corrosion Behaviors of Al-xCu-yLi-Mg Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1201-1216. |
[12] | Tong Zhang, Ying Han, Wen Wang, Yang Gao, Ying Song, Xu Ran. Influence of Aging Time on Microstructure and Corrosion Behavior of a Cu-Bearing 17Cr-1Si-0.5Nb Ferritic Heat-Resistant Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1289-1301. |
[13] | Chao-Yue Zhao, Xian-Hua Chen, Peng Peng, Teng Tu, Andrej Atrens, Fu-Sheng Pan. Microstructures and Mechanical Properties of Mg-xAl-1Sn-0.3Mn (x = 1, 3, 5) Alloy Sheets [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1217-1225. |
[14] | Xudong Du, Feng Wang, Zhi Wang, Xingxing Li, Zheng Liu, Pingli Mao. Hot Tearing Susceptibility of AXJ530 Alloy Under Low-Frequency Alternating Magnetic Field [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1259-1270. |
[15] | Ren Li, Jing Ren, Guo-Jia Zhang, Jun-Yang He, Yi-Ping Lu, Tong-Min Wang, Ting-Ju Li. Novel (CoFe2NiV0.5Mo0.2)100-xNbx Eutectic High-Entropy Alloys with Excellent Combination of Mechanical and Corrosion Properties [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1046-1056. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||