Acta Metallurgica Sinica (English Letters) ›› 2023, Vol. 36 ›› Issue (3): 486-494.DOI: 10.1007/s40195-022-01484-6
Previous Articles Next Articles
Jianan Hu1, Mengmeng Yang1, Wenlong Xiao2, Hao Wang1, Dehai Ping3, Chengze Liu4, Shewei Xin5, Songquan Wu1, Kai Zhang1,7, Yi Yang1(), Lai-Chang Zhang6, Aijun Huang7
Received:
2022-06-19
Revised:
2022-08-10
Accepted:
2022-08-26
Online:
2023-03-10
Published:
2022-11-09
Contact:
Yi Yang,yiyang.imr@163.com
Jianan Hu, Mengmeng Yang, Wenlong Xiao, Hao Wang, Dehai Ping, Chengze Liu, Shewei Xin, Songquan Wu, Kai Zhang, Yi Yang, Lai-Chang Zhang, Aijun Huang. Formation of Face-Centered Cubic Phase in Ti35 Alloy Under In Situ Heating Transmission Electron Microscopy[J]. Acta Metallurgica Sinica (English Letters), 2023, 36(3): 486-494.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 TEM observations of $\left\{ {10\overline{1} 2} \right\} <10\overline{1} \overline{1}>\alpha$ twinned sample at different temperatures during in situ heating: a room temperature, b 600 °C, c 880 °C, d 950 °C; (a-1, b-1, c-1, and d-1) bright field TEM images, (a-2, b-2 and c-2) the corresponding SAED patterns of the circled regions at the twin boundary in the BF images along the $\left[ {1\overline{2} 10} \right]_\text{m} //\left[ {1\overline{2} 10} \right]_\text{t}$ zone axes, (d-2) the key diagram of the SAED pattern of the circled region in d-1. The red, blue, green, and yellow hexagons in d-2 represent four FCC-Ti variants
Fig. 2 SAED patterns of $\left\{ {11\overline{2} 2} \right\} <11\overline{2} \overline{3}>$ twinned sample during in situ heating: a–c SAED patterns along the $\left[ {\overline{1} 100} \right]_\text{m} //\left[ {\overline{1} 100} \right]_\text{t}$ zone axis during heating at a room temperature, b 600 °C, c 980 °C; d the key diagram of the FCC-Ti diffraction pattern in c
Fig. 3 a Schematic diagram of the orientation relationship between α phase and FCC-Ti, b rotation relationship of the four sets of SAED patterns of FCC-Ti in Fig. 1d-2, c, d schematic diagrams of the orientation relationship between αmatrix/αtwin and FCC-Ti in $\left\{ {10\overline{1} 2} \right\} <10\overline{1} \overline{1}>$ twinned sample
Fig. 4 a SAED patterns of $\left\{ {10\overline{1} 2} \right\} < 10\overline{1} \overline{1} >$ twinned sample at 600 oC, b the key diagram of the intermediate state diffraction pattern in a, c schematic illustration of HCP-Ti → FCC-Ti phase transition
Fig. 5 Cohesive energy variation of HCP-Ti, BCC-Ti, and FCC-Ti caused by different content of interstitial atoms (O, N, and C) with inset showing the cohesive energy difference of FCC-HCP and BCC-HCP
[1] | D. Banerjee, J.C. Williams, Acta Mater. 61, 844 (2013) |
[2] | J.C. Jamieson, Science 140, 72 (1963) |
[3] | H.Y. Kim, Y. Ikehara, J.I. Kim, H. Hosoda, S. Miyazaki, Acta Mater. 54, 2419 (2006) |
[4] | G.G.E. Seward, S. Celotto, D.J. Prior, J. Wheeler, R.C. Pond, Acta Mater. 52, 821 (2004) |
[5] | F.E. Wawner, K.R. Lawless, J. Vac. Sci. Technol. 6, 588 (1969) |
[6] | A.F. Jankowski, M.A. Wall, J. Mater. Res.9, 31 (1994) |
[7] | T. Tepper, D. Shechtman, D. Heerden, D. Josell, Mater. Lett. 33, 181 (1997) |
[8] | J.B. Lai, L.J. Chen, C.S. Liu, Micron 30, 205 (1999) |
[9] | T. Tepper, D. Shechtman, D. Eleerden, D. Josell, Mater. Lett. 35, 100 (1998) |
[10] | D. Heerden, D. Josell, D. Shechtman, Acta Mater. 44, 297 (1996) |
[11] | R. Traylor, R.P. Zhang, J. Kacher, J.O. Douglas, P.A.J. Bagot, A.M. Minor, Acta Mater. 184, 199 (2020) |
[12] | D.L. Zhang, D.Y. Ying, Mater. Lett. 50, 149 (2002) |
[13] | G.A. Dorofeev, A.N. Lubnin, V.I.V.V.B.E. Lad’yanovMukhgalinPuskkarev, Phys. Met. Metallogr. 115, 157 (2014) |
[14] | P. Chatterjee, S.P.S. Gupta, Appl. Surf. Sci. 182, 372 (2001) |
[15] | S. Jiang, L.J. Huang, X. Gao, G. Liu, R. Zhang, Y. Jiao, S. Peng, Q. An, S. Wang, L. Geng, Acta Mater. 203, 116456 (2021) |
[16] | X.D. Zheng, M.Y. Gong, T. Xiong, H.L. Ge, L.X. Yang, Y.T. Zhou, S.J. Zheng, J. Wang, X.L. Ma, Scripta Mater. 162, 326 (2019) |
[17] | H.C. Wu, A. Kumar, J. Wang, X.F. Bi, C.N. Tome, Z. Zhang, S.X. Mao, Sci. Rep. 6, 24370 (2016) |
[18] | J.X. Yang, H.L. Zhao, H.R. Gong, M. Song, Q.Q. Ren, Sci. Rep. 8, 1992 (2018) |
[19] | H. Zhao, N.J. Ding, Y.P. Ren, H.B. Xie, B. Yang, G.W. Qin, J. Mater. Sci. 54, 7953 (2019) |
[20] | C. Chen, S.F. Qian, S. Wang, L. Niu, R. Liu, B. Liao, Z.H. Zhong, P. Lu, P. Li, L.F. Cao, Y.C. Wu, Mater. Charact. 136, 257 (2018) |
[21] | D.H. Hong, T.W. Lee, S.H. Lim, W.Y. Kim, S.K. Hwang, Scripta Mater. 69, 405 (2013) |
[22] | Q. Yu, J. Kacher, C. Gammer, R. Traylor, A. Samanta, Z.Z. Yang, A.M. Minor, Scripta Mater. 140, 9 (2017) |
[23] | X. Ma, X.P. Guo, M.S. Fu, Y.Q. Qiao, Mater. Charact. 142, 332 (2018) |
[24] | H. Zhao, M. Song, S. Ni, S. Shao, J. Wang, X. Liao, Acta Mater. 131, 271 (2017) |
[25] | H. Zhao, X. Hu, M. Song, S. Ni, Scripta Mater. 132, 63 (2017) |
[26] | Y. Li, S. Ni, Y. Liu, M. Song, Scripta Mater. 170, 34 (2019) |
[27] | B. Wei, S. Ni, Y. Liu, M. Song, Scripta Mater. 169, 46 (2019) |
[28] | Y.B. Chun, S.H. Yu, S.L. Semiatin, S.K. Hwang, Mater. Sci. Eng. A 398, 209 (2005) |
[29] | W.G. Burgers, Physica 1, 561 (1934) |
[30] | Z.D. Kou, L.X. Yang, Y.Q. Yang, X. Luo, B. Huang, Mater. Charact. 163, 110294 (2020) |
[31] | Y.H. Chang, S.Y. Zhang, C.H. Liebscher, D. Dye, D. Ponge, C. Scheu, G. Dehm, D. Raabe, B. Gault, W.J. Lu, Scripta Mater. 178, 39 (2020) |
[32] | P. Kwasniak, M. Muzyk, H. Garbacz, K.J. Kurzydlowski, Mater. Lett. 94, 92 (2013) |
[33] | P. Kwasniak, H. Garbacz, K.J. Kurzydlowski, Acta Mater. 102, 304 (2016) |
[34] | Y.D. Zhang, F.S. Yuan, F.Z. Han, M. Ali, W.B. Guo, J. Ren, G.P. Li, C.Z. Liu, H.F. Gu, G.H. Yuan, Mater. Sci. Eng. A 807, 140814 (2021) |
[35] | D. Shechtman, D. Vanheerden, D. Josell, Mater. Lett. 20, 329 (1994) |
[36] | H. Zhang, X. Ou, B. Wei, S. Ni, M. Song, Comput. Mater. Sci. 172, 109328 (2020) |
[37] | Y. Matsukawa, I. Okuma, H. Muta, Y. Shinohara, R. Suzue, H.L. Yang, T. Maruyama, T. Toyama, J.J. Shen, Y.F. Li, Y. Satoh, S. Yamanaka, H. Abe, Acta Mater. 126, 86 (2017) |
[38] | F.S. Yuan, F.Z. Han, Y.D. Zhang, A. Muhammad, W.B. Guo, J. Ren, C.Z. Liu, H.F. Gu, G.P. Li, G.H. Yuan, J. Mater. Sci. Technol. 98, 44 (2022) |
[1] | Chongfeng Sun, Shengqi Xi, Xiaofeng Dang, Jianping Li, Yongchun Guo, Zhong Yang, Yaping Bai. Formation of Fe-19 wt%Cr-9 wt%Ni Nanocrystalline Alloy with Excellent Corrosion Resistance: Phase Transition and Microstructure [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(6): 825-833. |
[2] | Ben-Qi Xu, Hui Zhang, Dong Ma, Qun-Shuang Ma, Li-Zhai Pei. Ageing Hardening Mechanism and Corrosion Resistance in the Fe65Cr13Cu3(CoMnMoNiAlTi)19 Medium-Entropy Stainless Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(11): 1601-1608. |
[3] | De-Xin Ma, Fu Wang, Jian-Zheng Guo, Wen-Liang Xu. Single Crystal Castability and Undercoolability of PWA1483 Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(11): 1415-1420. |
[4] | R. Shashanka†, D. Chaira. Effects of Nano-Y2O3 and Sintering Parameters on the Fabrication of PM Duplex and Ferritic Stainless Steels [J]. Acta Metallurgica Sinica (English Letters), 2016, 29(1): 58-71. |
[5] | Santhosh Manoharan, Rajeswarapalanichamy Ratnavelu, Sudhapriyanga Ganesapandian, Kanagaprabha Shanmugam, Iyakutti Kombiah. Investigation of Structural, Electronic and Mechanical Properties of Rubidium Metal Hydrides RbMH4 (M=B, Al, Ga) [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(8): 975-983. |
[6] | Ratnavelu Rajeswarapalanichamy, Manoharan Santhosh, Ganesapandian Sudhapriyanga, Shanmugam Kanagaprabha, Kombaih Iyakutti. Structural Stability, Electronic Structure and Mechanical Properties of Li-N-H System [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(5): 550-558. |
[7] | Siyu Li, Jin Zhang, Jinlong Yang, Yunlai Deng, Xinming Zhang. Influence of Mg Contents on Aging Precipitation Behavior of Al–3.5Cu–xMg Alloy [J]. Acta Metallurgica Sinica (English Letters), 2014, 27(1): 107-114. |
[8] | Benhai YU,Dong CHEN. Phase Transition Characters and Thermodynamics Modeling of the Newly-Discovered wII-and Post-Spinel Si3N4 Polymorphs: A First-Principles Investigation [J]. Acta Metallurgica Sinica (English Letters), 2013, 26(2): 131-136. |
[9] | Jun CAI, Daogang LU. Bonding Character and Formation Energy of Point Defects of He and Vacancy on (001) Surface of bcc Iron by First Principle Calculations [J]. Acta Metallurgica Sinica (English Letters), 2013, 26(1): 25-32. |
[10] | Xiang CHEN, Yungui CHEN,Yongbo TANG. Studies of short-time and high-temperature annealing and magnetic property of LaFe11.4Si1.6 compound [J]. Acta Metallurgica Sinica (English Letters), 2011, 24(5): 390-398. |
[11] | J.H. Gu , Z.L. Zhu. Ab initio Studies on Magnetism of 3d Transition Metal Dimers [J]. Acta Metallurgica Sinica (English Letters), 2007, 20(5): 341-346 . |
[12] | K.G. Keong. CRYSTALLISATION KINETICS AND PHASE TRANSFORMATION BEHAVIOUR OF ELECTROLESS NICKEL-PHOSPHORUS DEPOSIT WITH 6-9wt% PHOSPHORUS CONTENT [J]. Acta Metallurgica Sinica (English Letters), 2001, 14(6): 419-424 . |
[13] | Y. Huo; Y. Chen;X. Zu and M. Tu( Department of Metal Materials, Sichuan University, Chengdu 610065, China)( Department of Metal Materials, Sichuan University, Chengdu 610065, China)( Department of Metal Materials, Sichuan University, Chengdu 610065, China)( Department of Physics, Sichuan University, Chengdu 610065, China). STRESS-STRAIN HYSTERESIS OF POLYCRYSTALLINE SMAs─Ⅰ: A MODEL [J]. Acta Metallurgica Sinica (English Letters), 1999, 12(3): 205-210. |
[14] | RAO Jianxi Naval Academy of Engineering,Wuhan,China MA Ruzhang University of Science and Technology Beijing,Beijing,China HE Yusheng Tsinghua University,Beijing,China MA Ruzhang Professor,Department of Metal Physics,University of Science and Technology Beijing 100083,Beijing,China. INCOMMENSURATE AND COMMENSURATE PHASE TRANSITIONS IN Ti-Ni-Fe ALLOY [J]. Acta Metallurgica Sinica (English Letters), 1990, 3(2): 89-92. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||