Please wait a minute...
Acta Metallurgica Sinica (English Letters)  2019, Vol. 32 Issue (12): 1537-1548    DOI: 10.1007/s40195-019-00910-6
Orginal Article Current Issue | Archive | Adv Search |
Hot Deformation Behavior and Processing Map of a Cu-Bearing 2205 Duplex Stainless Steel
Tong Xi1, Lu Yin1, Chun-Guang Yang1(), Ke Yang1()
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Download:  HTML  PDF(2519KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The hot deformation behavior and processing map of Cu-bearing 2205 duplex stainless steel (2205-Cu DSS) were investigated at temperatures of 950-1150 °C and strain rates of 0.01-10 s-1. The effects of Cu addition and different deformation parameters on deformation behavior were, respectively, characterized by analyzing flow curves, constitutive equations and microstructures. The results indicated that the shapes of flow curves strongly depended on the volume fraction of two phases. When deformed at low strain rate, DRV in ferrite was prompted with increase in the temperature and was further developed to continuous DRX. At high strain rate, flow localization preferentially occurred in ferrite at low deformation temperature due to the strain partitioning and relatively less fraction of ferrite. The activation energy for 2205-Cu DSS was 452 kJ/mol and was found to connect with the variation of strain, strain rate and deformation temperature. The optimum hot deformation parameters for 2205-Cu DSS were obtained in the temperature range of 1100-1150 °C and strain rate range of 0.1-1 s-1 with a peak power dissipation efficiency of 41%. Flow localization was the main way to lead to flow instability. Meanwhile, the Cu-rich precipitates were generated within a few ferrite grains when deformed at temperature lower than 1000 °C. The interaction between dislocations and Cu-rich precipitates at high strain rate, as well as the limited DRV in ferrite and DRX in austenite, contributed to the complex microstructure and flow behavior.

Key words:  Cu-bearing duplex stainless steel      Hot deformation      Processing map      Dynamic recrystallization      Dynamic recovery     
Received:  27 January 2019     

Cite this article: 

Tong Xi, Lu Yin, Chun-Guang Yang, Ke Yang. Hot Deformation Behavior and Processing Map of a Cu-Bearing 2205 Duplex Stainless Steel. Acta Metallurgica Sinica (English Letters), 2019, 32(12): 1537-1548.

URL: 

https://www.amse.org.cn/EN/10.1007/s40195-019-00910-6     OR     https://www.amse.org.cn/EN/Y2019/V32/I12/1537

Fig. 1  Deformation procedure for the experimental 2205-Cu DSS
Fig. 2  Initial microstructure a, XRD patterns b of as-received 2205-Cu DSS before hot deformation. The inset in a shows the magnification of initial microstructure
Fig. 3  Volume fraction of austenite in 2205-Cu DSS as a function of deformation temperature
Fig. 4  Flow stress-strain curves of the 2205-Cu DSS deformed at different deformation conditions
Fig. 5  Regression fitting of the hyperbolic sine function for 2205-Cu DSS under the different flow stress, strain rate and deformation temperature
Fig. 6  Dependence of flow stress with Z parameter under different deformation conditions according to hyperbolic sine law
Fig. 7  Activation energy as a function of strain and strain rate
Fig. 8  Hot processing map for 2205-Cu DSS at strain of 0.6
Fig. 9  Optical micrographs of 2205-Cu DSS obtained at 1050 °C/0.1 s-1a, 1100 °C/0.1 s-1b, 1000 °C/10 s-1c, 1100 °C/10 s-1d
Fig. 10  Microstructure for 2205-Cu DSS obtained at 950 °C/0.01 s-1a, 1050 °C/0.01 s-1b, 1150 °C/0.01 s-1c, 950 °C/10 s-1d, 1050 °C/10 s-1e, 1150 °C/10 s-1f. Hereinto, black arrows denote the DRV in ferrite grains, and white arrows represent the DRX in austenite grain
Fig. 11  TEM images of the 2205-Cu DSS under different deformation conditions: a 950 °C/0.01 s-1, b 950 °C/10 s-1, c 1150 °C/0.01 s-1, d 1150 °C/10 s-1
Fig. 12  SEM-EDS analysis of austenite and ferrite for 2205-Cu DSS at temperature of 1000 °C
Fig. 13  TEM bright field images of Cu-rich precipitates in 2205-Cu DSS under different deformation conditions: a 950 °C/10 s-1, b 1000 °C/10 s-1. The inset is the corresponding electron diffraction patterns of the matrix
[1] R. Davison, J. Redmond, Mater. Des. 12, 187(1991)
[2] J. Nilsson, Mater. Sci. Technol. 8, 685(1992)
[3] B. Zhang, Z. Jiang, H. Li, S. Zhang, H. Feng, H. Li, Mater. Charact. 129, 31(2017)
[4] H.C. Zhu, Z.H. Jiang, H.B. Li, H. Feng, S.C. Zhang, G.H. Liu, J.H. Zhu, P.B. Wang, B.B. Zhang, G.W. Fan, Metall. Mater. Trans. B 48, 2493 (2017)
[5] T. Xi, C. Yang, M. Babar Shahzad, K. Yang, Mater. Des. 87, 303(2015)
[6] L. Nan, J. Cheng, K. Yang, J. Mater. Sci. Technol. 28, 1067(2012)
[7] L. Nan, Y. Liu, M. Lu, K. Yang, J. Mater. Sci. Mater. Med. 19, 3057(2008)
[8] L. Nan, G. Ren, D. Wang, K. Yang, J. Mater. Sci. Technol. 32, 445(2016)
[9] P. Li, Y. Zhao, Y. Liu, Y. Zhao, D. Xu, C. Yang, T. Zhang, T. Gu, K. Yang, J. Mater. Sci. Technol. 33, 723(2017)
[10] J. Zhao, C. Yang, D. Zhang, Y. Zhao, M.S. Khan, D. Xu, T. Xi, X. Li, K. Yang, RSC Adv. 6, 112738(2016)
[11] A. Momeni, K. Dehghani, X. Zhang, J. Mater. Sci. 47, 2966(2012)
[12] A. Dehghan-Manshadi, M. Barnett, P. Hodgson, Mater. Sci. Technol. 23, 1478(2007)
[13] P.P. Bhattacharjee, M. Zaid, G.D. Sathiaraj, B. Bhadak, Metall. Mater. Trans. A 45, 2180 (2014)
[14] M.Z. Ahmed, P.P. Bhattacharjee, Steel Res. Int. 87, 472(2016)
[15] P. Richards, T. Sheppard, Mater. Sci. Technol. 2, 836(1986)
[16] A. Momeni, K. Dehghani, H. Keshmiri, G. Ebrahimi, Mater. Sci. Eng. A 527, 1605 (2010)
[17] W. Roberts, H. Boden, B. Ahlblom, Met. Sci. 13, 195(1979)
[18] A.S. Taylor, P.D. Hodgson, Mater. Sci. Eng. A 528, 3130 (2011)
[19] A. Iza-Mendia, A. Pi?ol-Juez, J.J. Urcola, I. Gutiérrez, Metall. Mater. Trans. A 29, 2975 (1998)
[20] O. Balancin, W.A.M. Hoffmann, J.J. Jonas, Metall. Mater. Trans. A 31, 1353 (2000)
[21] P. Cizek, J. Whiteman, W. Rainforth, J. Beynon, J. Microsc. 213, 285(2004)
[22] Y. Yang, B. Yan, Mater. Sci. Eng. A 579, 194 (2013)
[23] E. Pu, W. Zheng, J. Xiang, Z. Song, J. Li, Mater. Sci. Eng. A 598, 174 (2014)
[24] C.G. Schmidt, C.M. Young, B. Walser, R.H. Klundt, O.D. Sherby, Metall. Trans. A 13, 447 (1982)
[25] R. Raj, Metall. Mater. Trans. A 12, 1089 (1981)
[26] Y. Prasad, S. Sasidhara, Hot Working Guide: A Compendium of Processing Maps (ASM International, Materials Park, 1997)
[27] D. Cai, L. Xiong, W. Liu, G. Sun, M. Yao, Mater. Charact. 58, 941(2007)
[28] A. Momeni, K. Dehghani, Mater. Sci. Eng. A 527, 5467 (2010)
[29] A. Momeni, K. Dehghani, Mater. Sci. Eng. A 528, 1448 (2011)
[30] H. Li, W. Jiao, H. Feng, X. Li, Z. Jiang, G. Li, L. Wang, G. Fan, P. Han, Metals 6, 223 (2016)
[31] A. Marchattiwar, A. Sarkar, J.K. Chakravartty, B.P. Kashyap, J. Mater. Eng. Perform. 22, 2168 (2013)
[32] C.M. Sellars, W.J.M. Tegart, Metall. Rev. 17, 1(1972)
[33] Y.V.R.K. Prasad, T. Seshacharyulu, Metall. Rev. 43, 243(1998)
[34] N.D. Ryan, H.J. McQueen, J. Mater. Process. Technol. 21, 177(1990)
[35] L. Briottet, J.J. Jonas, F. Montheillet, Acta Mater. 44, 1665(1996)
[36] H. Ziegler, Some Extremum Principles in Irreversible Thermodynamics (Swiss Federal Institute of Technology, Zürich, 1962)
[37] J. Baczynski, J. Jonas, Metall. Mater. Trans. A 29, 447 (1998)
[38] A. Belyakov, R. Kaibyshev, R. Zaripova, Mater. Sci. Forum 113, 385 (1993)
[39] K. Kato, Y. Saito, T. Sakai, ISIJ Int. 24, 1050(1984)
[40] P. Cizek, B. Wynne, Mater. Sci. Eng. A 230, 88 (1997)
[41] S. Lee, J. Kim, S.J. Lee, B.C. De Cooman, Scr. Mater. 65, 1073(2011)
[42] D. Isheim, S. Vaynman, M.E. Fine, D.N. Seidman, Scr. Mater. 59, 1235(2008)
[43] J.W. Bai, P.P. Liu, Y.M. Zhu, X.M. Li, C.Y. Chi, H.Y. Yu, X.S. Xie, Q. Zhan, Mater. Sci. Eng. A 584, 57 (2013)
[44] P. Othen, M. Jenkins, G. Smith, W. Phythian, Philos. Mag. Lett. 64, 383(1991)
[45] Y. Wen, A. Hirata, Z. Zhang, T. Fujita, C.T. Liu, J. Jiang, M. Chen, Acta Mater. 61, 2133 (2013)
[46] X. Zhang, Y. Zhang, B. Tian, J. An, Z. Zhao, A.A. Volinsky, Y. Liu, K. Song, Compos. B Eng. 160, 110(2019)
[1] Kwang-Su Kim, Lin-Xiu Du, Hyo-sung Choe, Tae-Hyong Lee, Gyong-Chol Lee. Influence of Vanadium Content on Hot Deformation Behavior of Low-Carbon Boron Microalloyed Steel[J]. 金属学报英文版, 2020, 33(5): 705-715.
[2] Xin Cai, Xiao-Qiang Hu, Lei-Gang Zheng, Dian-Zhong Li. Hot Deformation Behavior and Processing Maps of 0.3C-15Cr-1Mo-0.5N High Nitrogen Martensitic Stainless Steel[J]. 金属学报英文版, 2020, 33(5): 693-704.
[3] A. Shah S., D. Wu, Chen R. S., Song G. S.. Temperature Effects on the Microstructures of Mg-Gd-Y Alloy Processed by Multi-direction Impact Forging[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(2): 243-251.
[4] Hong-Xuan Zhang, Shuai-Feng Chen, Ming Cheng, Ce Zheng, Shi-Hong Zhang. Modeling the Dynamic Recrystallization of Mg-11Gd-4Y-2Zn-0.4Zr Alloy Considering Non-uniform Deformation and LPSO Kinking During Hot Compression[J]. Acta Metallurgica Sinica (English Letters), 2019, 32(9): 1122-1134.
[5] Le Zhang, Wei Wang, M. Babar Shahzad, Yi-Yin Shan, Ke Yang. Hot Deformation Behavior of an Ultra-High-Strength Fe-Ni-Co-Based Maraging Steel[J]. Acta Metallurgica Sinica (English Letters), 2019, 32(9): 1161-1172.
[6] Yi-Tao Wang, Jian-Bo Li, Yun-Chang Xin, Xian-Hua Chen, Muhammad Rashad, Bin Liu, Yong Liu. Hot Deformation Behavior and Hardness of a CoCrFeMnNi High-Entropy Alloy with High Content of Carbon[J]. Acta Metallurgica Sinica (English Letters), 2019, 32(8): 932-943.
[7] Ning Yan, Hong-Shuang Di, Hui-Qiang Huang, R D. K. Misra., Yong-Gang Deng. Hot Deformation Behavior and Processing Maps of a Medium Manganese TRIP Steel[J]. Acta Metallurgica Sinica (English Letters), 2019, 32(8): 1021-1031.
[8] Chao Liu, Ming-Chun Zhao, Tugudur Unenbayar, Ying-Chao Zhao, Bin Xie, Yan Tian, Yi-Yin Shan, Ke Yang. Hot Deformation Behavior of a New Nuclear Use Reduced Activation Ferritic/Martensitic Steel[J]. Acta Metallurgica Sinica (English Letters), 2019, 32(7): 825-834.
[9] Kun-Kun Deng, Cui-Ju Wang, Kai-Bo Nie, Xiao-Jun Wang. Recent Research on the Deformation Behavior of Particle Reinforced Magnesium Matrix Composite: A Review[J]. Acta Metallurgica Sinica (English Letters), 2019, 32(4): 413-525.
[10] Wilasinee Kingkam, Cheng-Zhi Zhao, Hong Li, He-Xin Zhang, Zhi-Ming Li. Hot Deformation and Corrosion Resistance of High-Strength Low-Alloy Steel[J]. Acta Metallurgica Sinica (English Letters), 2019, 32(4): 495-505.
[11] Yu-Cheng Zhang, Zhen-Sheng Meng, Yang Meng, Xin-Hua Ju, Zhong-Hang Jiang, Ze-Jun Ma. Effect of Nb Content on the Hot Deformation Behavior of S460ML Steel[J]. Acta Metallurgica Sinica (English Letters), 2019, 32(4): 526-534.
[12] Kun Sheng, Li-Wei Lu, Yao Xiang, Min Ma, Zhong-Chang Wang. Microstructure and Mechanical Properties of AZ31 Mg Alloy Fabricated by Pre-compression and Frustum Shearing Extrusion[J]. Acta Metallurgica Sinica (English Letters), 2019, 32(2): 235-244.
[13] Tian-Rui Li, Guo-Huai Liu, Mang Xu, Tian-Liang Fu, Yong Tian, Ra-Ja Devesh Kumar Misra, Zhao-Dong Wang. Hot Deformation Behavior and Microstructural Characteristics of Ti-46Al-8Nb Alloy[J]. Acta Metallurgica Sinica (English Letters), 2018, 31(9): 933-944.
[14] Chuan Wu, Shuang Han. Hot Deformation Behavior and Dynamic Recrystallization Characteristics in a Low-Alloy High-Strength Ni-Cr-Mo-V Steel[J]. Acta Metallurgica Sinica (English Letters), 2018, 31(9): 963-974.
[15] H. Q. Huang, H. S. Di, N. Yan, J. C. Zhang, Y. G. Deng, R. D. K. Misra, J. P. Li. Hot Deformation Behavior and Processing Maps of a High Al-low Si Transformation-Induced Plasticity Steel: Microstructural Evolution and Flow Stress Behavior[J]. Acta Metallurgica Sinica (English Letters), 2018, 31(5): 503-514.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
Home
About AMSE
Privacy Statement
Terms & Conditions
Editorial Office: Acta Metallurgica Sinica(English Letters), 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-024-83978879
E-mail:ams@imr.ac.cn

Copyright © 2016 AMSE, All Rights Reserved.