Acta Metallurgica Sinica (English Letters) ›› 2019, Vol. 32 ›› Issue (8): 932-943.DOI: 10.1007/s40195-019-00916-0
• Orginal Article • Previous Articles Next Articles
Yi-Tao Wang1, Jian-Bo Li1(), Yun-Chang Xin2(
), Xian-Hua Chen1, Muhammad Rashad3, Bin Liu4, Yong Liu4
Received:
2019-01-21
Revised:
2019-03-25
Online:
2019-08-10
Published:
2019-07-08
Yi-Tao Wang, Jian-Bo Li, Yun-Chang Xin, Xian-Hua Chen, Muhammad Rashad, Bin Liu, Yong Liu. Hot Deformation Behavior and Hardness of a CoCrFeMnNi High-Entropy Alloy with High Content of Carbon[J]. Acta Metallurgica Sinica (English Letters), 2019, 32(8): 932-943.
Add to citation manager EndNote|Ris|BibTeX
Fig. 5 a Processing map at a true strain of 0.65, b optical micrograph showing the cracking at the edge of the specimen which was deformed at lnZ?=?53.19 (high Z, 800 °C/10-1 s-1)
Fig. 6 SEM micrographs of specimens deformed at a lnZ?=?53.19 (high Z, 800 °C/10-1 s-1), b lnZ?=?48.59 (high Z, 800 °C/10-3 s-1), c lnZ?=?44.48 (intermediate Z, 1000 °C/10-1 s-1), d lnZ?=?39.88 (low Z, 1000 °C/10-3 s-1). The volume fractions of coarse particles are a 12.14%, b 10.44%, c 6.48%, d 3.09%, while the volume fractions of fine particles are a 0%, b 4.12%, c 6.44%, d 7.14%, respectively
Fig. 7 XRD patterns of the (CoCrFeMnNi)95C5 (at.%) alloy in the different conditions of Z value. lnZ?=?48.59 (high Z, 800 °C/10-3 s-1) and lnZ?=?39.88 (low Z, 1000 °C/10-3 s-1)
Fig. 8 STEM image of (CoCrFeMnNi)95C5 (at.%) alloy deformed at lnZ?=?39.88 (low Z, 1000 °C/10-3 s-1) a, distributions of alloy constituents: b Cr, c Mn, d Fe, e Co, f Ni, g C
Fig. 9 EBSD inverse pole figure (IPF) maps and image quality (IQ) maps of the specimens hot-compressed at different conditions: a, b lnZ?=?53.19 (high Z, 800 °C/10-1 s-1); c, d lnZ?=?48.59 (high Z, 800 °C/10-3 s-1); e, f lnZ?=?39.88 (low Z, 1000 °C/10-3 s-1). The fractions of low-angle grain boundaries of a, b, c are 21, 13, 5%, respectively
Fig. 10 TEM bright-field images and the selected area electron diffraction patterns (SAEDs) of (CoCrFeMnNi)95C5 (at.%) alloys in lnZ?=?48.59 (high Z, 800 °C/10-3 s-1) a, aM23C7 carbides; b-d lnZ?=?39.88 (low Z, 1000 °C/10-3 s-1), b the mixture of M23C6 and M7C3 carbides, c irregular dislocation cells around the carbides, d DRX grain in the vicinity of carbide particles
Alloy | Microhardness (HV) |
---|---|
AlCoCrFeNi (SPS) [ | 625 |
CoCrFeNiMn (SPS) [ | 646 |
CoCrFeMnNi (AM) [ | 170 |
Al0.5CoCrCuFeNi (AM) [ | 208 |
(CoCrFeMnNi)98C2 (at.%) (AM) [ | 240 |
(CoCrFeMnNi)95C5 (at.%) (AM) [this work] | 345 |
Table 1 Summary of hardness of CoCrFeNi-based alloys
Alloy | Microhardness (HV) |
---|---|
AlCoCrFeNi (SPS) [ | 625 |
CoCrFeNiMn (SPS) [ | 646 |
CoCrFeMnNi (AM) [ | 170 |
Al0.5CoCrCuFeNi (AM) [ | 208 |
(CoCrFeMnNi)98C2 (at.%) (AM) [ | 240 |
(CoCrFeMnNi)95C5 (at.%) (AM) [this work] | 345 |
Alloy | Activation energy (kJ/mol) |
---|---|
CoCrFeMnNi [ | 350 |
(CoCrFeMnNi)99C1 (at.%) [ | 385.43 |
(CoCrFeMnNi)95C5 (at.%) [this work] | 423 |
Table 2 Activation energy (Q) of alloys based on CoCrFeMnNi
Alloy | Activation energy (kJ/mol) |
---|---|
CoCrFeMnNi [ | 350 |
(CoCrFeMnNi)99C1 (at.%) [ | 385.43 |
(CoCrFeMnNi)95C5 (at.%) [this work] | 423 |
Zener-Hollomon parameter (lnZ) | Vfcc (%) | HVCoCrFeMnNi (HV) [ | G (GPa) [ | b [ | f (Fine carbides) (%) | d (nm) | Vcc (Coarse carbides) (%) | HVcc (Coarse carbides) [ |
---|---|---|---|---|---|---|---|---|
48.59 | 82.68 | 160 | 80 | 0.254 | 4.12 | 250 | 10.44 | 900 |
39.88 | 89.74 | 7.14 | 150 | 3.09 |
Table 3 Hardness parameters of the (CoCrFeMnNi)95C5 (at.%) alloy at different Z conditions
Zener-Hollomon parameter (lnZ) | Vfcc (%) | HVCoCrFeMnNi (HV) [ | G (GPa) [ | b [ | f (Fine carbides) (%) | d (nm) | Vcc (Coarse carbides) (%) | HVcc (Coarse carbides) [ |
---|---|---|---|---|---|---|---|---|
48.59 | 82.68 | 160 | 80 | 0.254 | 4.12 | 250 | 10.44 | 900 |
39.88 | 89.74 | 7.14 | 150 | 3.09 |
|
[1] | Ce Zheng, Shuai-Feng Chen, Rui-Xue Wang, Shi-Hong Zhang, Ming Cheng. Effect of Hydrostatic Pressure on LPSO Kinking and Microstructure Evolution of Mg-11Gd-4Y-2Zn-0.5Zr Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 248-264. |
[2] | Yongfei Juan, Jiao Zhang, Yongbing Dai, Qing Dong, Yanfeng Han. Designing Rules of Laser-Clad High-Entropy Alloy Coatings with Simple Solid Solution Phases [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1064-1076. |
[3] | Rui-Xuan Li, Jun-Wei Qiao, Peter K. Liaw, Yong Zhang. Preternatural Hexagonal High-Entropy Alloys: A Review [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1033-1045. |
[4] | Qiuxin Nie, Hui Liang, Dongxu Qiao, Zhaoxin Qi, Zhiqiang Cao. Microstructures and Mechanical Properties of Multi-component AlxCrFe2Ni2Mo0.2 High-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1135-1144. |
[5] | Jia-Qi Zhao, Hua Tian, Zhong Wang, Xue-Jiao Wang, Jun-Wei Qiao. FCC-to-HCP Phase Transformation in CoCrNix Medium-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1151-1158. |
[6] | Shikai Wu, Wei Gao, Tao Lu, Ye Pan. Co-Free High-Entropy Alloys Powders Immobilized by Electrospray and Microfluidics for Decolorization of Azo Dye [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1103-1110. |
[7] | Chengbo Yang, Jing Zhang, Meng Li, Xuejian Liu. Soft-Magnetic High-Entropy AlCoFeMnNi Alloys with Dual-Phase Microstructures Induced by Annealing [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1124-1134. |
[8] | Yuan Yu, Peiying Shi, Kai Feng, Jiongjie Liu, Jun Cheng, Zhuhui Qiao, Jun Yang, Jinshan Li, Weimin Liu. Effects of Ti and Cu on the Microstructure Evolution of AlCoCrFeNi High-Entropy Alloy During Heat Treatment [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1077-1090. |
[9] | Hui Jiang, Tian-Dang Huang, Chao Su, Hong-Bin Zhang, Kai-Ming Han, Sheng-Xue Qin. Microstructure and Mechanical Behavior of CrFeNi2V0.5Wx (x = 0, 0.25) High-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1117-1123. |
[10] | Hao Wu, Si-Rui Huang, Cheng-Yan Zhu, Ji-Feng Zhang, He-Guo Zhu, Zong-Han Xie. In Situ TiC/FeCrNiCu High-Entropy Alloy Matrix Composites: Reaction Mechanism, Microstructure and Mechanical Properties [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1091-1102. |
[11] | P. F. Zhou, D. H. Xiao, T. C. Yuan. Microstructure, Mechanical and Corrosion Properties of AlCoCrFeNi High-Entropy Alloy Prepared by Spark Plasma Sintering [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 937-946. |
[12] | Yunhai Su, Xuewei Liang, Yunqi Liu, Zhiyong Dai. Effect of Ti Addition on the Microstructure and Property of FeAlCuCrNiMo0.6 High-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 957-967. |
[13] | Kwang-Su Kim, Lin-Xiu Du, Hyo-sung Choe, Tae-Hyong Lee, Gyong-Chol Lee. Influence of Vanadium Content on Hot Deformation Behavior of Low-Carbon Boron Microalloyed Steel [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(5): 705-715. |
[14] | Xin Cai, Xiao-Qiang Hu, Lei-Gang Zheng, Dian-Zhong Li. Hot Deformation Behavior and Processing Maps of 0.3C-15Cr-1Mo-0.5N High Nitrogen Martensitic Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(5): 693-704. |
[15] | A. Shah S., D. Wu, Chen R. S., Song G. S.. Temperature Effects on the Microstructures of Mg-Gd-Y Alloy Processed by Multi-direction Impact Forging [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(2): 243-251. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||