Acta Metallurgica Sinica (English Letters) ›› 2022, Vol. 35 ›› Issue (9): 1531-1546.DOI: 10.1007/s40195-022-01380-z
Previous Articles Next Articles
Hao-Jie Yan1, Jun-Jie Xia2, Lian-Kui Wu1(), Fa-He Cao1
Received:
2021-08-14
Revised:
2021-10-26
Accepted:
2021-11-14
Online:
2022-09-10
Published:
2022-01-17
Contact:
Lian-Kui Wu
About author:
Lian-Kui Wu, wulk5@mail.sysu.edu.cnHao-Jie Yan, Jun-Jie Xia, Lian-Kui Wu, Fa-He Cao. Hot Corrosion Behavior of Ti45Al8.5Nb Alloy: Effect of Anodization and Pre-oxidation[J]. Acta Metallurgica Sinica (English Letters), 2022, 35(9): 1531-1546.
Add to citation manager EndNote|Ris|BibTeX
Fig. 2 Top-surface a-c and cross-sectional d SEM images of the PO-anodized Ti45Al8.5Nb alloy. e XRD pattern of the PO-anodized alloy. The symbols marked in b-d show where EDS analysis was carried out. The inset in d shows the optical image of the PO-anodized alloy
Point | Element (at.%) | |||
---|---|---|---|---|
Al | Ti | O | Nb | |
1 | 18.88 | 14.42 | 65.51 | 1.18 |
2 | 21.69 | 9.08 | 68.53 | 0.70 |
3 | 24.00 | 6.84 | 67.94 | 1.22 |
4 | 45.01 | 47.77 | - | 7.22 |
Table 1 EDS results of the points marked in Fig. 2
Point | Element (at.%) | |||
---|---|---|---|---|
Al | Ti | O | Nb | |
1 | 18.88 | 14.42 | 65.51 | 1.18 |
2 | 21.69 | 9.08 | 68.53 | 0.70 |
3 | 24.00 | 6.84 | 67.94 | 1.22 |
4 | 45.01 | 47.77 | - | 7.22 |
Fig. 3 Mass change of bare (1), anodized (2), and PO-anodized (3) Ti45Al8.5Nb alloys with Na2SO4 deposit during hot corrosion at 700 °C. The optical images of the specimens after hot corrosion for 100 h are given
Fig. 5 Top-surface SEM images of bare a-c, anodized d-f, and PO-anodized g-i Ti45Al8.5Nb alloys with Na2SO4 deposit after hot corrosion for 100 h. The symbols marked in each image show where EDS analysis was carried out
Point | Element (at.%) | |||||
---|---|---|---|---|---|---|
Ti | Al | O | Nb | Na | S | |
1 | 10.55 | 15.57 | 70.25 | 1.69 | 1.93 | 0.01 |
2 | 12.81 | 15.80 | 67.65 | 1.91 | 1.83 | - |
3 | 12.50 | 15.10 | 68.61 | 2.22 | 1.42 | 0.14 |
4 | 15.80 | 16.83 | 64.35 | 2.37 | 0.57 | 0.08 |
5 | 6.27 | 25.69 | 67.20 | 0.73 | 0.11 | - |
6 | 7.32 | 23.08 | 68.70 | 0.74 | 0.16 | - |
Table 2 EDS results of the points marked in Fig. 5
Point | Element (at.%) | |||||
---|---|---|---|---|---|---|
Ti | Al | O | Nb | Na | S | |
1 | 10.55 | 15.57 | 70.25 | 1.69 | 1.93 | 0.01 |
2 | 12.81 | 15.80 | 67.65 | 1.91 | 1.83 | - |
3 | 12.50 | 15.10 | 68.61 | 2.22 | 1.42 | 0.14 |
4 | 15.80 | 16.83 | 64.35 | 2.37 | 0.57 | 0.08 |
5 | 6.27 | 25.69 | 67.20 | 0.73 | 0.11 | - |
6 | 7.32 | 23.08 | 68.70 | 0.74 | 0.16 | - |
Fig. 6 Cross-sectional SEM images a, c, e and corresponding EDS elemental maps b, d, f of Ti, Al, Nb, and O for bare a, b, anodized c, d, PO-anodized e, f Ti45Al8.5Nb alloys with Na2SO4 deposit after hot corrosion for 100 h. The symbols marked in each image show where EDS analysis was carried out
Point | Element (at.%) | |||||
---|---|---|---|---|---|---|
Ti | Al | O | Nb | Na | S | |
1 | 20.08 | 38.09 | 6.16 | 1.50 | 0.15 | 34.02 |
2 | 20.70 | 55.30 | 3.03 | 0.75 | 0.02 | 20.20 |
3 | 34.98 | 7.05 | 6.52 | 0.04 | - | 51.41 |
4 | 17.32 | 58.83 | 4.02 | 1.48 | 0.12 | 18.23 |
5 | 38.63 | 6.88 | 8.99 | 0.05 | - | 45.44 |
6 | 23.32 | 65.76 | 1.69 | 0.21 | 0.04 | 8.99 |
7 | 29.75 | 16.24 | 7.63 | 0.06 | - | 46.30 |
8 | 41.36 | 5.47 | 7.87 | 0.18 | - | 45.11 |
Table 3 EDS results of the points marked in Fig. 6
Point | Element (at.%) | |||||
---|---|---|---|---|---|---|
Ti | Al | O | Nb | Na | S | |
1 | 20.08 | 38.09 | 6.16 | 1.50 | 0.15 | 34.02 |
2 | 20.70 | 55.30 | 3.03 | 0.75 | 0.02 | 20.20 |
3 | 34.98 | 7.05 | 6.52 | 0.04 | - | 51.41 |
4 | 17.32 | 58.83 | 4.02 | 1.48 | 0.12 | 18.23 |
5 | 38.63 | 6.88 | 8.99 | 0.05 | - | 45.44 |
6 | 23.32 | 65.76 | 1.69 | 0.21 | 0.04 | 8.99 |
7 | 29.75 | 16.24 | 7.63 | 0.06 | - | 46.30 |
8 | 41.36 | 5.47 | 7.87 | 0.18 | - | 45.11 |
Fig. 7 Mass change of bare (1), anodized (2), and PO-anodized (3) Ti45Al8.5Nb alloys with NaCl deposit during hot corrosion at 700 °C. The optical images of the specimens after hot corrosion for 100 h are given
Fig. 9 Top-surface SEM images of bare a, b, anodized c, d, PO-anodized e, f Ti45Al8.5Nb alloys with NaCl deposit after hot corrosion for 100 h. The symbols marked in each image show where EDS analysis was carried out
Point | Element (at.%) | |||||
---|---|---|---|---|---|---|
Ti | Al | O | Nb | Na | Cl | |
1 | 12.02 | 13.62 | 70.82 | 1.99 | 1.51 | 0.05 |
2 | 10.63 | 5.60 | 76.77 | 2.62 | 4.30 | 0.08 |
3 | 20.71 | 9.01 | 60.97 | 5.61 | 3.48 | 0.22 |
4 | 17.46 | 2.80 | 70.37 | 5.18 | 4.02 | 0.17 |
5 | 24.50 | 2.12 | 69.62 | 0.05 | 3.30 | 0.41 |
6 | 12.09 | 16.51 | 59.48 | 6.11 | 5.61 | 0.19 |
7 | 2.93 | 9.81 | 58.75 | 13.96 | 14.51 | 0.04 |
8 | 17.30 | 7.98 | 73.45 | 0.07 | 1.10 | 0.09 |
9 | 21.24 | 3.17 | 73.37 | 0.04 | 1.91 | 0.28 |
10 | 21.50 | 7.92 | 62.17 | 6.02 | 7.92 | 0.30 |
Table 4 EDS results of the points marked in Fig. 9
Point | Element (at.%) | |||||
---|---|---|---|---|---|---|
Ti | Al | O | Nb | Na | Cl | |
1 | 12.02 | 13.62 | 70.82 | 1.99 | 1.51 | 0.05 |
2 | 10.63 | 5.60 | 76.77 | 2.62 | 4.30 | 0.08 |
3 | 20.71 | 9.01 | 60.97 | 5.61 | 3.48 | 0.22 |
4 | 17.46 | 2.80 | 70.37 | 5.18 | 4.02 | 0.17 |
5 | 24.50 | 2.12 | 69.62 | 0.05 | 3.30 | 0.41 |
6 | 12.09 | 16.51 | 59.48 | 6.11 | 5.61 | 0.19 |
7 | 2.93 | 9.81 | 58.75 | 13.96 | 14.51 | 0.04 |
8 | 17.30 | 7.98 | 73.45 | 0.07 | 1.10 | 0.09 |
9 | 21.24 | 3.17 | 73.37 | 0.04 | 1.91 | 0.28 |
10 | 21.50 | 7.92 | 62.17 | 6.02 | 7.92 | 0.30 |
Fig. 10 Cross-sectional SEM images of bare a, b, anodized c, d, PO-anodized e, f Ti45Al8.5Nb alloys with NaCl deposit after hot corrosion for 100 h. The symbols marked in each image show where EDS analysis was carried out
Point | Element (at.%) | |||||
---|---|---|---|---|---|---|
Ti | Al | O | Nb | Na | Cl | |
1 | 52.84 | 5.83 | 29.90 | 9.49 | 0.52 | 1.43 |
2 | 19.94 | 9.28 | 64.33 | 1.70 | 4.59 | 0.16 |
3 | 47.29 | 40.56 | 5.86 | 6.29 | - | - |
4 | 21.24 | 13.00 | 60.96 | 3.05 | 1.63 | 0.12 |
5 | 40.65 | 22.39 | 48.01 | 4.18 | 0.14 | 0.48 |
6 | 22.97 | 25.18 | 41.44 | 3.21 | 2.17 | 0.03 |
7 | 44.61 | 41.77 | 7.26 | 6.36 | - | - |
8 | 43.90 | 40.18 | 5.53 | 10.39 | - | - |
9 | 35.52 | 19.97 | 38.47 | 4.40 | 0.12 | 1.52 |
10 | 46.75 | 42.88 | 3.86 | 6.51 | - | - |
11 | 46.39 | 39.62 | 3.48 | 10.51 | - | - |
Table 5 EDS results of the points marked in Fig. 10
Point | Element (at.%) | |||||
---|---|---|---|---|---|---|
Ti | Al | O | Nb | Na | Cl | |
1 | 52.84 | 5.83 | 29.90 | 9.49 | 0.52 | 1.43 |
2 | 19.94 | 9.28 | 64.33 | 1.70 | 4.59 | 0.16 |
3 | 47.29 | 40.56 | 5.86 | 6.29 | - | - |
4 | 21.24 | 13.00 | 60.96 | 3.05 | 1.63 | 0.12 |
5 | 40.65 | 22.39 | 48.01 | 4.18 | 0.14 | 0.48 |
6 | 22.97 | 25.18 | 41.44 | 3.21 | 2.17 | 0.03 |
7 | 44.61 | 41.77 | 7.26 | 6.36 | - | - |
8 | 43.90 | 40.18 | 5.53 | 10.39 | - | - |
9 | 35.52 | 19.97 | 38.47 | 4.40 | 0.12 | 1.52 |
10 | 46.75 | 42.88 | 3.86 | 6.51 | - | - |
11 | 46.39 | 39.62 | 3.48 | 10.51 | - | - |
Fig. 11 Mass change of bare (1), anodized (2), and PO-anodized (3) Ti45Al8.5Nb alloys with 75 wt% Na2SO4 + 25 wt% NaCl deposit during hot corrosion at 700 °C. The optical images of the specimens after hot corrosion for 100 h are given
Fig. 13 Top-surface SEM images of bare a-c, anodized d-f, PO-anodized g-j Ti45Al8.5Nb alloys with 75 wt% Na2SO4 + 25 wt% NaCl after hot corrosion for 100 h. The symbol marked in the images shows where EDS analysis was carried out
Point | Element (at.%) | ||||||
---|---|---|---|---|---|---|---|
Ti | Al | O | Nb | Na | Cl | S | |
1 | 2.53 | 0.42 | 62.46 | 17.90 | 16.57 | 0.12 | - |
2 | 27.40 | 7.16 | 61.11 | 4.26 | - | 0.07 | - |
3 | 16.48 | 3.11 | 73.12 | 6.46 | 0.51 | 0.06 | 0.26 |
4 | 9.39 | 15.50 | 59.69 | 8.96 | 6.36 | 0.10 | - |
5 | 16.55 | 1.48 | 78.47 | 3.31 | 0.17 | 0.01 | - |
6 | 23.42 | 6.93 | 62.11 | 7.08 | 0.32 | 0.15 | - |
7 | 10.11 | 17.39 | 67.04 | 4.77 | 0.21 | 0.47 | - |
Table 6 EDS results of the points marked in Fig. 13
Point | Element (at.%) | ||||||
---|---|---|---|---|---|---|---|
Ti | Al | O | Nb | Na | Cl | S | |
1 | 2.53 | 0.42 | 62.46 | 17.90 | 16.57 | 0.12 | - |
2 | 27.40 | 7.16 | 61.11 | 4.26 | - | 0.07 | - |
3 | 16.48 | 3.11 | 73.12 | 6.46 | 0.51 | 0.06 | 0.26 |
4 | 9.39 | 15.50 | 59.69 | 8.96 | 6.36 | 0.10 | - |
5 | 16.55 | 1.48 | 78.47 | 3.31 | 0.17 | 0.01 | - |
6 | 23.42 | 6.93 | 62.11 | 7.08 | 0.32 | 0.15 | - |
7 | 10.11 | 17.39 | 67.04 | 4.77 | 0.21 | 0.47 | - |
Fig. 14 Cross-sectional SEM images a, c, e and corresponding EDS elemental maps b, d, f of Ti, Al, Nb, and O for bare a, b, anodized c, d, PO-anodized e, f Ti45Al8.5Nb alloys with 75 wt% Na2SO4 + 25 wt% NaCl after hot corrosion for 100 h. The symbols marked in each image show where EDS analysis was carried out
Point | Element (at.%) | ||||||
---|---|---|---|---|---|---|---|
Ti | Al | O | Nb | Na | Cl | S | |
1 | 17.77 | 13.86 | 63.82 | 3.48 | 0.91 | 0.08 | 0.09 |
2 | 16.13 | 15.57 | 61.74 | 3.52 | 3.04 | - | - |
3 | 45.54 | 42.65 | 5.11 | 6.70 | - | - | - |
4 | 45.25 | 42.76 | 2.15 | 9.84 | - | - | - |
5 | 14.75 | 14.45 | 67.82 | 2.40 | 0.56 | 0.01 | 0.01 |
6 | 48.11 | 40.27 | 5.23 | 6.39 | - | - | - |
7 | 46.51 | 41.63 | 1.52 | 10.34 | - | - | - |
8 | 17.84 | 21.96 | 59.11 | 0.89 | 0.11 | 0.10 | - |
9 | 20.00 | 19.45 | 57.17 | 2.70 | 0.27 | 0.19 | 0.22 |
10 | 46.17 | 44.70 | 2.52 | 6.61 | - | - | - |
Table 7 EDS results of the points marked in Fig. 14
Point | Element (at.%) | ||||||
---|---|---|---|---|---|---|---|
Ti | Al | O | Nb | Na | Cl | S | |
1 | 17.77 | 13.86 | 63.82 | 3.48 | 0.91 | 0.08 | 0.09 |
2 | 16.13 | 15.57 | 61.74 | 3.52 | 3.04 | - | - |
3 | 45.54 | 42.65 | 5.11 | 6.70 | - | - | - |
4 | 45.25 | 42.76 | 2.15 | 9.84 | - | - | - |
5 | 14.75 | 14.45 | 67.82 | 2.40 | 0.56 | 0.01 | 0.01 |
6 | 48.11 | 40.27 | 5.23 | 6.39 | - | - | - |
7 | 46.51 | 41.63 | 1.52 | 10.34 | - | - | - |
8 | 17.84 | 21.96 | 59.11 | 0.89 | 0.11 | 0.10 | - |
9 | 20.00 | 19.45 | 57.17 | 2.70 | 0.27 | 0.19 | 0.22 |
10 | 46.17 | 44.70 | 2.52 | 6.61 | - | - | - |
[1] |
E.A. Loria, Intermetallics 8, 1339 (2000)
DOI URL |
[2] | W. Diao, L.H. Ye, Z.W. Ji, R. Yang, Q.M. Hu, Acta Metall. Sin. -Engl. Lett. 32, 1511 (2019) |
[3] |
Y. Garip, O. Ozdemir, J. Alloys Compd. 780, 364 (2019)
DOI URL |
[4] |
R. Pflumm, A. Donchev, S. Mayer, H. Clemens, M. Schütze, Intermetallics 53, 45 (2014)
DOI URL |
[5] |
J.P. Lin, L.L. Zhao, G.Y. Li, L.Q. Zhang, X.P. Song, F. Ye, G.L. Chen, Intermetallics 19, 131 (2011)
DOI URL |
[6] |
J.J. Dai, J.Y. Zhu, C.Z. Chen, F. Weng, J. Alloys Compd. 685, 784 (2016)
DOI URL |
[7] |
M. Schütze, JOM 69, 2602 (2017)
DOI URL |
[8] |
S. Friedle, R. Pflumm, A. Seyeux, P. Marcus, M. Schütze, Oxid. Met. 89, 123 (2018)
DOI URL |
[9] |
Z. Yao, M. Marck, Mater. Sci. Eng. A 192-193, 994 (1995)
DOI URL |
[10] |
L. Fan, L. Liu, Z. Yu, M. Cao, Y. Li, F. Wang, Sci. Rep. 6, 29019 (2016)
DOI URL |
[11] | Z. Wang, G. Ma, Z. Li, H. Ruan, J. Yuan, L. Wang, P. Ke, A. Wang, Corros. Sci. 192, 109788 (2021) |
[12] |
N. Eliaz, G. Shemesh, R.M. Latanision, Eng. Failure Anal. 9, 31 (2002)
DOI URL |
[13] |
Y.H. Qian, X.H. Li, M.H. Li, J.H. Xu, B. Lu, Trans. Nonferrous Met. Soc. China 27, 954 (2017)
DOI URL |
[14] |
Z. Lin, Y. Zhou, M. Li, J. Wang, J. Eur. Ceram. Soc. 26, 3871 (2006)
DOI URL |
[15] |
K. Zhang, Z. Li, W. Gao, Mater. Lett. 57, 834 (2002)
DOI URL |
[16] |
S. Cao, J. Sun, T. Chen, J. Wang, M. Chen, Y. Hui, J. Wang, W. Li, W. Lu, Ceram. Int. 47, 18792 (2021)
DOI URL |
[17] |
H. Liao, S. Dong, J. Zeng, H. Zhang, Y. Wang, D. Wang, C. Mao, Y. Huang, J. Jiang, L. Deng, X. Zhou, X. Cao, Ceram. Int. 47, 6232 (2021)
DOI URL |
[18] |
X. Ma, Y. He, J. Lin, D. Wang, J. Zhang, Surf. Coat. Technol. 206, 2690 (2012)
DOI URL |
[19] |
Z. Tong, X. Ren, Y. Ren, F. Dai, Y. Ye, W. Zhou, L. Chen, Z. Ye, Surf. Coat. Technol. 335, 32 (2018)
DOI URL |
[20] | Y. Garip, O. Ozdemir, Corros. Sci. 174, 108819 (2020) |
[21] | M. Zhang, Y. Feng, Y. Wang, Y. Niu, L. Xin, Y. Li, J. Su, S. Zhu, F. Wang, Acta Metall. Sin. -Engl. Lett. 34, 1434 (2021) |
[22] | N. Abu-warda, L.M. Tomás, A.J. López, M.V. Utrilla, Surf. Coat. Technol. 418, 127277 (2021) |
[23] | M. Hara, D. Hieda, Y. Hinata, Nippon Kinzoku Gakkaishi 63, 1238 (1999) |
[24] |
R.A. Rapp, Corros. Sci. 44, 209 (2002)
DOI URL |
[25] | L. Sun, Q.G. Fu, J. Sun, G.P. Zhang, Surf. Coat. Technol. 385, 125388 (2020) |
[26] | Y. Garip, Z. Garip, O. Ozdemir, J. Alloys Compd. 843, 156010 (2020) |
[27] |
A.H. Yaghtin, S. Javadpour, M.H. Shariat, J. Alloys Compd. 584, 303 (2014)
DOI URL |
[28] | J.R. Nicholls, J. Leggett, P. Andrews, Mater. Corros. 48, 56 (1997) |
[29] |
M. Yoshihara, K. Miura, Intermetallics 3, 357 (1995)
DOI URL |
[30] |
H. Jiang, M. Hirohasi, Y. Lu, H. Imanari, Scr. Mater. 46, 639 (2002)
DOI URL |
[31] |
M. Naveed, A.F. Renteria, S. Weiß, J. Alloys Compd. 691, 489 (2017)
DOI URL |
[32] |
E. Godlewska, M. Mitoraj, K. Leszczynska, Corros. Sci. 78, 63 (2014)
DOI URL |
[33] |
M. Mitoraj-Królikowska, E. Godlewska, Corros. Sci. 115, 18 (2017)
DOI URL |
[34] |
Y.T. Hu, L. Zheng, H.J. Yan, L.K. Wu, X.-J. Lin, Trans. Nonferrous Met. Soc. China 31, 193 (2021)
DOI URL |
[35] |
Y. Wang, J. Xiong, J. Yan, H. Fan, J. Wang, Surf. Coat. Technol. 206, 1277 (2011)
DOI URL |
[36] |
M.P. Bacos, M. Thomas, J.L. Raviart, A. Morel, S. Navéos, P. Josso, Mater. High Temp. 26, 339 (2009)
DOI URL |
[37] |
M.P. Bacos, M. Thomas, J.L. Raviart, A. Morel, S. Mercier, P. Josso, Intermetallics 19, 1120 (2011)
DOI URL |
[38] |
H. Lin, W. Liang, Y. Jia, Q. Miao, R. Hu, Z. Ding, L. Yu, Appl. Surf. Sci. 487, 868 (2019)
DOI URL |
[39] | W.B. Li, L.L. Liu, Y.F. Yang, S.L. Zhu, F.H. Wang, Acta Metall. Sin. -Engl. Lett. 32, 599 (2019) |
[40] |
Y. Xu, W.P. Liang, M. Miao, L. Wang, B.L. Ren, S.Y. Cui, J.J. Xia, Z.J. Yao, Rare Met. Mater. Eng. 47, 1075 (2018)
DOI URL |
[41] |
M.H. Mo, L.K. Wu, H.Z. Cao, J.P. Lin, D.H. Lu, G.Q. Zheng, Surf. Coat. Technol. 307, 190 (2016)
DOI URL |
[42] |
M.H. Mo, L.K. Wu, H.Z. Cao, J.P. Lin, G.Q. Zheng, Appl. Surf. Sci. 407, 246 (2017)
DOI URL |
[43] |
L.K. Wu, J.J. Xia, H.Z. Cao, W.J. Liu, G.Y. Hou, Y.P. Tang, G.Q. Zheng, Oxid. Met. 90, 617 (2018)
DOI URL |
[44] | L.K. Wu, J.J. Xia, M.Y. Jiang, Q. Wang, H.X. Wu, D.B. Sun, H.Y. Yu, F.-H. Cao, Corros. Sci. 166, 108447 (2020) |
[45] |
K. Rubacha, E. Godlewska, K. Mars, Corros. Sci. 118, 158 (2017)
DOI URL |
[46] |
Z. Tang, F. Wang, W. Wu, Oxid. Met. 51, 235 (1999)
DOI URL |
[47] |
Z. Tang, F. Wang, W. Wu, Intermetallics 7, 1271 (1999)
DOI URL |
[1] | Yulun Wu, Rui Hu, Jieren Yang, Keren Zhang, Xuyang Wang. Active Eutectoid Decomposition of α → γ + τ1 and the Morphological Evolution in a Ru-Containing TiAl Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(8): 1042-1050. |
[2] | Mingming Zhang, Yipeng Feng, Yahui Wang, Yunsong Niu, Li Xin, Yongfeng Li, Jianxiu Su, Shenglong Zhu, Fuhui Wang. Corrosion Behaviors of Nitride Coatings on Titanium Alloy in NaCl-Induced Hot Corrosion [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(10): 1434-1446. |
[3] | U?ursoy Olgun, Mustafa Gülfen, Fatih üstel, Hale Arslan. Electro-Optics and Band Gap Energies of Nanosilver-Coated TiO2 Nanotubes on Titanium Metal [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(2): 153-163. |
[4] | Katarzyna Siuzdak, Mariusz Szkoda, Jakub Karczewski, Jacek Ryl, Kazimierz Darowicki, Katarzyna Grochowska. Fabrication and Significant Photoelectrochemical Activity of Titania Nanotubes Modified with Thin Indium Tin Oxide Film [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(12): 1210-1220. |
[5] | Tan He,Rui Hu,Tie-Bang Zhang,Jin-Shan Li. Effect of Nb Content on Solidification Characteristics and Microsegregation in Cast Ti-48Al-xNb Alloys [J]. Acta Metallurgica Sinica (English Letters), 2016, 29(8): 714-721. |
[6] | Guang-Jie Feng, Zhuo-Ran Li, Rui-Hua Liu, Shi-Cheng Feng. Effects of Joining Conditions on Microstructure and Mechanical Properties of Cf/Al Composites and TiAl Alloy Combustion Synthesis Joints [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(4): 405-413. |
[7] | Tan He, Rui Hu, Jun Wang, Jie-Ren Yang, Jin-Shan Li. Effects of β-Dendrite Growth Velocity on β → α Transformation of Hypoperitectic Ti-46Al-7Nb Alloy [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(1): 58-63. |
[8] | Duoli Wu, Sumeng Jiang, Qixiang Fan, Jun Gong, Chao Sun. Hot Corrosion Behavior of a Cr-Modified Aluminide Coating on a Ni-Based Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2014, 27(4): 627-634. |
[9] | M. Mubarak Ali, V. Raj. Formation and Surface Structural Features of Crystalline Ceramic Nanocomposite Coatings on Aluminium Using Lithium Sulphate with Silicate Additive [J]. Acta Metallurgica Sinica (English Letters), 2014, 27(2): 185-197. |
[10] | H.F. Wang, J.J. Guo, G.F. Mi. Numerical Simulation of Columnar to Equiaxed Transition for Directionally Solidified Ti-44Al Alloy [J]. Acta Metallurgica Sinica (English Letters), 2008, 21(2): 146-156 . |
[11] | J.L. Su , G.K. Hu. A MICROMECHANICAL MODEL FOR γ-TiAl BASE PST CRYSTALS [J]. Acta Metallurgica Sinica (English Letters), 2005, 18(6): 686-694 . |
[12] | J. Zhang, D. Feng , Z.Y. Zhong. INTERMETALLICS AS SUBSTITUTES FOR SUPERALLOYS [J]. Acta Metallurgica Sinica (English Letters), 2005, 18(4): 463-467 . |
[13] | S.J.Geng, Fuhui Wang, S.L.Zhu. HOT CORROSION BEHAVIOR OF K38G ALLOY AND ITS SPUTTERED NANOCRYSTALLINE COATING BY PRE-DEPOSITED SULFATE AT 900℃ [J]. Acta Metallurgica Sinica (English Letters), 2002, 15(1): 119-122 . |
[14] | X.M.Meng, L.L.He, D.X.Li. THE STRUCTURE CHANGE OF γ-TiAl IRRADIATED BY 50keV XENON IONS AT ROOM TEMPERATURE [J]. Acta Metallurgica Sinica (English Letters), 2001, 14(4): 263-266 . |
[15] | S.N .Ma, Q.Liu and C.Q. Li Surface Engineering Research Institute of CMES, Beijing 100072, China. STUDY OF HOT CORROSION RESISTANCE MECHANISMS OF ARC SPRAYING COATINGS [J]. Acta Metallurgica Sinica (English Letters), 1999, 12(5): 1007-1013. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||