Acta Metallurgica Sinica (English Letters) ›› 2025, Vol. 38 ›› Issue (12): 2145-2164.DOI: 10.1007/s40195-025-01919-w
Previous Articles Next Articles
Xiaolong Li1, Chao Deng1, Yunchang Xin1(
), Xinde Huang1(
), Guangjie Huang2, Yao Cheng1, Guodong Song3
Received:2025-04-02
Revised:2025-05-21
Accepted:2025-06-07
Online:2025-12-10
Published:2025-09-06
Contact:
Yunchang Xin, ycxin@njtech.edu.cn;Xinde Huang, huangxinde@njtech.edu.cn
Xiaolong Li, Chao Deng, Yunchang Xin, Xinde Huang, Guangjie Huang, Yao Cheng, Guodong Song. Quantification of Planar Mechanical Anisotropy in Dilute Mg-Zn-Gd Alloy[J]. Acta Metallurgica Sinica (English Letters), 2025, 38(12): 2145-2164.
Add to citation manager EndNote|Ris|BibTeX
| Mode | ${\tau }_{0}$ | ${\tau }_{1}$ | ${\theta }_{0}$ | ${\theta }_{1}$ | ${A}^{\text{th}1}$ | ${A}^{\text{th}2}$ | ${h}^{\text{ss}^{\prime}}$ | |||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| UR 350 ℃ 2 h | Basal $\langle a\rangle$ | 35 | 26 | 47 | 3 | - | - | 1 | 1 | 1 | 4.47 | 2.45 |
| Prism $\langle a\rangle$ | 76 | 68 | 588 | 2 | - | - | 1 | 1 | 1 | 1.81 | 4.72 | |
| Pyram $\langle c+a\rangle$ | 165 | 116 | 301 | 3 | - | - | 1 | 1 | 1 | 4.07 | 2.01 | |
| $\{10\bar{1}2\}$ twinning | 23 | 45 | 43 | 12 | 0.777 | 5.758 | 3.59 | 4.23 | 1.44 | 4.39 | 1.69 | |
| $\{10\bar{1}1\}$ twinning | 155 | 37 | 1818 | 11 | 0.665 | 0.128 | 3.79 | 2.29 | 1.04 | 3.51 | 3.51 | |
| UR 380 ℃ 2 h | Basal $\langle a\rangle$ | 32 | 36 | 67 | 3 | - | - | 1 | 1 | 1 | 4.47 | 2.45 |
| Prism $\langle a\rangle$ | 74 | 68 | 588 | 2 | - | - | 1 | 1 | 1 | 1.81 | 4.72 | |
| Pyram $\langle c+a\rangle$ | 163 | 116 | 301 | 3 | - | - | 1 | 1 | 1 | 4.07 | 2.01 | |
| $\{10\bar{1}2\}$ twinning | 21 | 45 | 43 | 12 | 0.777 | 6.758 | 3.59 | 4.23 | 1.44 | 4.39 | 1.69 | |
| $\{10\bar{1}1\}$ twinning | 153 | 37 | 1818 | 11 | 0.665 | 0.128 | 3.79 | 2.29 | 1.04 | 3.51 | 3.51 | |
| UR 400 ℃ 2 h | Basal $\langle a\rangle$ | 26 | 36 | 77 | 3 | - | - | 1 | 1 | 1 | 4.47 | 2.45 |
| Prism $\langle a\rangle$ | 68 | 78 | 588 | 2 | - | - | 1 | 1 | 1 | 1.81 | 4.72 | |
| Pyram $\langle c+a\rangle$ | 157 | 116 | 301 | 3 | - | - | 1 | 1 | 1 | 4.07 | 2.01 | |
| $\{10\bar{1}2\}$ twinning | 15 | 45 | 43 | 12 | 0.577 | 8.758 | 3.59 | 4.23 | 1.44 | 4.39 | 1.69 | |
| $\{10\bar{1}1\}$ twinning | 147 | 37 | 1818 | 11 | 0.665 | 0.128 | 3.79 | 2.29 | 1.04 | 3.51 | 3.51 | |
| CR 350 ℃ 2 h | Basal $\langle a\rangle$ | 26 | 36 | 77 | 3 | - | - | 1 | 1 | 1 | 4.47 | 2.45 |
| Prism $\langle a\rangle$ | 66 | 77 | 588 | 2 | - | - | 1 | 1 | 1 | 1.81 | 4.72 | |
| Pyram $\langle c+a\rangle$ | 157 | 116 | 301 | 3 | - | - | 1 | 1 | 1 | 4.07 | 2.01 | |
| $\{10\bar{1}2\}$ twinning | 25 | 45 | 43 | 12 | 0.577 | 8.758 | 3.59 | 4.23 | 1.44 | 4.39 | 1.69 | |
| $\{10\bar{1}1\}$ twinning | 147 | 37 | 1818 | 11 | 0.665 | 0.128 | 3.79 | 2.29 | 1.04 | 3.51 | 3.51 | |
Table 1 Constitutive parameters of annealed sheets after optimized debugging
| Mode | ${\tau }_{0}$ | ${\tau }_{1}$ | ${\theta }_{0}$ | ${\theta }_{1}$ | ${A}^{\text{th}1}$ | ${A}^{\text{th}2}$ | ${h}^{\text{ss}^{\prime}}$ | |||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| UR 350 ℃ 2 h | Basal $\langle a\rangle$ | 35 | 26 | 47 | 3 | - | - | 1 | 1 | 1 | 4.47 | 2.45 |
| Prism $\langle a\rangle$ | 76 | 68 | 588 | 2 | - | - | 1 | 1 | 1 | 1.81 | 4.72 | |
| Pyram $\langle c+a\rangle$ | 165 | 116 | 301 | 3 | - | - | 1 | 1 | 1 | 4.07 | 2.01 | |
| $\{10\bar{1}2\}$ twinning | 23 | 45 | 43 | 12 | 0.777 | 5.758 | 3.59 | 4.23 | 1.44 | 4.39 | 1.69 | |
| $\{10\bar{1}1\}$ twinning | 155 | 37 | 1818 | 11 | 0.665 | 0.128 | 3.79 | 2.29 | 1.04 | 3.51 | 3.51 | |
| UR 380 ℃ 2 h | Basal $\langle a\rangle$ | 32 | 36 | 67 | 3 | - | - | 1 | 1 | 1 | 4.47 | 2.45 |
| Prism $\langle a\rangle$ | 74 | 68 | 588 | 2 | - | - | 1 | 1 | 1 | 1.81 | 4.72 | |
| Pyram $\langle c+a\rangle$ | 163 | 116 | 301 | 3 | - | - | 1 | 1 | 1 | 4.07 | 2.01 | |
| $\{10\bar{1}2\}$ twinning | 21 | 45 | 43 | 12 | 0.777 | 6.758 | 3.59 | 4.23 | 1.44 | 4.39 | 1.69 | |
| $\{10\bar{1}1\}$ twinning | 153 | 37 | 1818 | 11 | 0.665 | 0.128 | 3.79 | 2.29 | 1.04 | 3.51 | 3.51 | |
| UR 400 ℃ 2 h | Basal $\langle a\rangle$ | 26 | 36 | 77 | 3 | - | - | 1 | 1 | 1 | 4.47 | 2.45 |
| Prism $\langle a\rangle$ | 68 | 78 | 588 | 2 | - | - | 1 | 1 | 1 | 1.81 | 4.72 | |
| Pyram $\langle c+a\rangle$ | 157 | 116 | 301 | 3 | - | - | 1 | 1 | 1 | 4.07 | 2.01 | |
| $\{10\bar{1}2\}$ twinning | 15 | 45 | 43 | 12 | 0.577 | 8.758 | 3.59 | 4.23 | 1.44 | 4.39 | 1.69 | |
| $\{10\bar{1}1\}$ twinning | 147 | 37 | 1818 | 11 | 0.665 | 0.128 | 3.79 | 2.29 | 1.04 | 3.51 | 3.51 | |
| CR 350 ℃ 2 h | Basal $\langle a\rangle$ | 26 | 36 | 77 | 3 | - | - | 1 | 1 | 1 | 4.47 | 2.45 |
| Prism $\langle a\rangle$ | 66 | 77 | 588 | 2 | - | - | 1 | 1 | 1 | 1.81 | 4.72 | |
| Pyram $\langle c+a\rangle$ | 157 | 116 | 301 | 3 | - | - | 1 | 1 | 1 | 4.07 | 2.01 | |
| $\{10\bar{1}2\}$ twinning | 25 | 45 | 43 | 12 | 0.577 | 8.758 | 3.59 | 4.23 | 1.44 | 4.39 | 1.69 | |
| $\{10\bar{1}1\}$ twinning | 147 | 37 | 1818 | 11 | 0.665 | 0.128 | 3.79 | 2.29 | 1.04 | 3.51 | 3.51 | |
| Sample | Tensile direction | Yield stress (MPa) | $r$ | $\Delta r$ |
|---|---|---|---|---|
| UR 350 °C 2 h | RD | 162 | 0.90 | 0.17 |
| 45° | 139 | 0.68 | ||
| TD | 120 | 0.79 | ||
| CR 350 °C 2 h | RD | 95 | 0.69 | 0.04 |
| 45° | 93 | 0.57 | ||
| TD | 91 | 0.52 |
Table 2 Yield strength, Lankford value ($r$ value), and in-plane anisotropy ($\Delta r$ value) of different rolled sheets along RD, TD, and 45° direction
| Sample | Tensile direction | Yield stress (MPa) | $r$ | $\Delta r$ |
|---|---|---|---|---|
| UR 350 °C 2 h | RD | 162 | 0.90 | 0.17 |
| 45° | 139 | 0.68 | ||
| TD | 120 | 0.79 | ||
| CR 350 °C 2 h | RD | 95 | 0.69 | 0.04 |
| 45° | 93 | 0.57 | ||
| TD | 91 | 0.52 |
Fig. 3 True stress-strain curves of annealed sheets during tension along RD and TD: a UR-350 °C/2 h; b UR-380 °C/2 h; c UR-400 °C/2 h; d CR-350 °C/2 h
| Sample | Tensile direction | Yield strength (MPa) | Yield strength difference | Tensile strength (MPa) | Elongation (%) |
|---|---|---|---|---|---|
| UR 350 °C 2 h | RD | 127.8 ± 1 | ~ 33.1 | 205.4 ± 1 | 22.9 ± 1 |
| TD | 94.7 ± 2 | 188.4 ± 1 | 22.5 ± 1 | ||
| UR 380 °C 2 h | RD | 121.9 ± 1 | ~ 34.2 | 202.6 ± 1 | 17.9 ± 2 |
| TD | 87.7 ± 3 | 187.8 ± 1 | 25.7 ± 1 | ||
| UR 400 °C 2 h | RD | 105.1 ± 5 | ~ 33.1 | 198.7 ± 1 | 16.3 ± 1 |
| TD | 72.0 ± 2 | 181.4 ± 1 | 24 ± 2 | ||
| CR 350 °C 2 h | RD | 95.9 ± 4 | ~ 1.7 | 191.9 ± 3.1 | 15.6 ± 1 |
| TD | 94.2 ± 3 | 185.6 ± 1 | 14.1 ± 1 |
Table 3 Mechanical properties of annealed sheets with different rolling processes stretched along RD and TD
| Sample | Tensile direction | Yield strength (MPa) | Yield strength difference | Tensile strength (MPa) | Elongation (%) |
|---|---|---|---|---|---|
| UR 350 °C 2 h | RD | 127.8 ± 1 | ~ 33.1 | 205.4 ± 1 | 22.9 ± 1 |
| TD | 94.7 ± 2 | 188.4 ± 1 | 22.5 ± 1 | ||
| UR 380 °C 2 h | RD | 121.9 ± 1 | ~ 34.2 | 202.6 ± 1 | 17.9 ± 2 |
| TD | 87.7 ± 3 | 187.8 ± 1 | 25.7 ± 1 | ||
| UR 400 °C 2 h | RD | 105.1 ± 5 | ~ 33.1 | 198.7 ± 1 | 16.3 ± 1 |
| TD | 72.0 ± 2 | 181.4 ± 1 | 24 ± 2 | ||
| CR 350 °C 2 h | RD | 95.9 ± 4 | ~ 1.7 | 191.9 ± 3.1 | 15.6 ± 1 |
| TD | 94.2 ± 3 | 185.6 ± 1 | 14.1 ± 1 |
| Direction | Basal (%) | Prismatic (%) | Pyramidal 1 | Pyramidal 11 | {10-12} twin (%) | {10-11} twin | |
|---|---|---|---|---|---|---|---|
| UR 350 °C 2 h | RD | 61.6 | 36.7 | 0 | 0 | 1.7 | 0 |
| TD | 62.2 | 20.3 | 0 | 0 | 17.5 | 0 | |
| UR 380 °C 2 h | RD | 61.7 | 35.9 | 0 | 0 | 2.4 | 0 |
| TD | 58.8 | 19.5 | 0 | 0 | 21.7 | 0 | |
| UR 400 °C 2 h | RD | 57.1 | 38.0 | 0 | 0 | 4.9 | 0 |
| TD | 52.7 | 12.3 | 0 | 0 | 35.0 | 0 | |
| CR 350 °C 2 h | RD | 76.2 | 21.7 | 0 | 0 | 2.1 | 0 |
| TD | 73.7 | 23.3 | 0 | 0 | 3.0 | 0 |
Table 4 Proportion of grains with different deformation mechanisms activated during RD and TD tension
| Direction | Basal (%) | Prismatic (%) | Pyramidal 1 | Pyramidal 11 | {10-12} twin (%) | {10-11} twin | |
|---|---|---|---|---|---|---|---|
| UR 350 °C 2 h | RD | 61.6 | 36.7 | 0 | 0 | 1.7 | 0 |
| TD | 62.2 | 20.3 | 0 | 0 | 17.5 | 0 | |
| UR 380 °C 2 h | RD | 61.7 | 35.9 | 0 | 0 | 2.4 | 0 |
| TD | 58.8 | 19.5 | 0 | 0 | 21.7 | 0 | |
| UR 400 °C 2 h | RD | 57.1 | 38.0 | 0 | 0 | 4.9 | 0 |
| TD | 52.7 | 12.3 | 0 | 0 | 35.0 | 0 | |
| CR 350 °C 2 h | RD | 76.2 | 21.7 | 0 | 0 | 2.1 | 0 |
| TD | 73.7 | 23.3 | 0 | 0 | 3.0 | 0 |
| Direction | B-B (%) | B-Pr (%) | B-ET (%) | Pr-Pr (%) | Pr-ET (%) | ET-ET (%) | |
|---|---|---|---|---|---|---|---|
| UR-350 °C 2 h | RD | 37.3 | 45.6 | 2.0 | 13.9 | 1.3 | 0 |
| TD | 38.8 | 24.5 | 22.3 | 4.0 | 6.9 | 3.5 | |
| UR-350 °C 2 h | RD | 37.9 | 44.4 | 2.4 | 13.2 | 1.9 | 0.2 |
| TD | 34.1 | 21.6 | 26.7 | 3.4 | 8.8 | 5.3 | |
| UR-400 °C 2 h | RD | 38.2 | 39.9 | 5.0 | 13.8 | 2.8 | 0.3 |
| TD | 33.5 | 14.4 | 35.5 | 1.8 | 7.2 | 7.7 | |
| CR 350 °C 2 h | RD | 58.0 | 33.4 | 2.9 | 4.9 | 0.8 | 0.04 |
| TD | 56.7 | 33.0 | 4.2 | 5.0 | 1.0 | 0.2 |
Table 5 Number fraction of slip/twinning transfer types during tension along RD and TD
| Direction | B-B (%) | B-Pr (%) | B-ET (%) | Pr-Pr (%) | Pr-ET (%) | ET-ET (%) | |
|---|---|---|---|---|---|---|---|
| UR-350 °C 2 h | RD | 37.3 | 45.6 | 2.0 | 13.9 | 1.3 | 0 |
| TD | 38.8 | 24.5 | 22.3 | 4.0 | 6.9 | 3.5 | |
| UR-350 °C 2 h | RD | 37.9 | 44.4 | 2.4 | 13.2 | 1.9 | 0.2 |
| TD | 34.1 | 21.6 | 26.7 | 3.4 | 8.8 | 5.3 | |
| UR-400 °C 2 h | RD | 38.2 | 39.9 | 5.0 | 13.8 | 2.8 | 0.3 |
| TD | 33.5 | 14.4 | 35.5 | 1.8 | 7.2 | 7.7 | |
| CR 350 °C 2 h | RD | 58.0 | 33.4 | 2.9 | 4.9 | 0.8 | 0.04 |
| TD | 56.7 | 33.0 | 4.2 | 5.0 | 1.0 | 0.2 |
| [1] | Q.Y. Liao, D.Z. Zhao, Q.C. Le, W.X. Hu, Y.C. Jiang, W.Y. Zhou, L. Ren, D.D. Li, Z.Y. Yin, Acta Metall. Sin.-Engl. Lett. 37, 1115 (2024) |
| [2] | X. Li, H. Yan, R. Chen, Acta Metall. Sin.-Engl. Lett. 36, 251 (2022) |
| [3] |
M.G. Jiang, C. Xu, H. Yan, G.H. Fan, T. Nakata, C.S. Lao, R.S. Chen, S. Kamado, E.H. Han, B.H. Lu, Acta Mater. 157, 53 (2018)
DOI URL |
| [4] |
Z.X. Cai, H.T. Jiang, D. Tang, Z. Ma, Q. Kang, Rare Met. 32, 441 (2013)
DOI URL |
| [5] |
J. Xu, B. Guan, Y. Xin, X. Wei, G. Huang, C. Liu, Q. Liu, J. Mater. Sci. Technol. 99, 251 (2022)
DOI URL |
| [6] |
X. Huang, Y. Xin, Y. Cao, G. Huang, W. Li, J. Mater. Sci. Technol. 109, 30 (2022)
DOI URL |
| [7] |
C. Haase, L.A. Barrales-Mora, F. Roters, D.A. Molodov, G. Gottstein, Acta Mater. 80, 327 (2014)
DOI URL |
| [8] |
B.Q. Shi, R.D. Zhang, X.L. Shang, Y.Z. Wang, T. Long, J.M. Jiang, C.Q. Li, B.Y. Liu, J. Mater. Res. Technol. 24, 4315 (2023)
DOI URL |
| [9] |
S. Zhou, T. Liu, A. Tang, Y. Huang, P. Peng, J. Zhang, N. Hort, R. Willumeit-Römer, F. Pan, Mater. Des. 225, 111476 (2023)
DOI URL |
| [10] |
R. Ni, C.J. Boehlert, Y. Zeng, B. Chen, S. Huang, J. Zheng, H. Zhou, Q. Wang, D. Yin, Int. J. Plast. 182, 104119 (2024)
DOI URL |
| [11] |
C. Tome, G.R. Canova, U.F. Kocks, N. Christodoulou, J.J. Jonas, Acta Metall. 32, 1637 (1984)
DOI URL |
| [12] |
S.R. Agnew, M.H. Yoo, C.N. Tomé, Acta Mater. 49, 4277 (2001)
DOI URL |
| [13] | I. Basu, T. Al Samman, Acta Metal. 96, 111 (2015) |
| [14] | A. Chapuis, Z.Q. Wang, Q. Liu, Mater. Sci. Eng. A 655, 244 (2016) |
| [15] |
G. Proust, C.N. Tomé, A. Jain, S.R. Agnew, Int. J. Plast. 25, 861 (2009)
DOI URL |
| [16] |
J. Xu, B. Guan, R. Fu, J. Huang, W. Liu, Q. Hu, Z. Hu, C. Yan, J. Mater. Res. Technol. 28, 1497 (2024)
DOI URL |
| [17] | J.W. Lu, D.D. Yin, G.H. Huang, G.F. Quan, Y. Zeng, H. Zhou, Q.D. Wang, Mater. Sci. Eng. A 700, 598 (2017) |
| [18] | S. Pan, X. Huang, Y. Xin, G. Huang, Q. Li, C. Tan, Q. Liu, Mater. Sci. Eng. A 731, 288 (2018) |
| [19] | S. Pan, Y. Xin, G. Huang, Q. Li, F. Guo, Q. Liu, Mater. Sci. Eng. A 653, 93 (2016) |
| [20] |
Z.R. Zeng, Y.M. Zhu, S.W. Xu, M.Z. Bian, C.H.J. Davies, N. Birbilis, J.F. Nie, Acta Mater. 105, 479 (2016)
DOI URL |
| [21] | Z.R. Zeng, M.Z. Bian, S.W. Xu, C.H.J. Davies, N. Birbilis, J.F. Nie, Mater. Sci. Eng. A 674, 459 (2016) |
| [22] |
X. Luo, Z. Feng, T. Yu, J. Luo, T. Huang, G. Wu, N. Hansen, X. Huang, Acta Mater. 183, 398 (2020)
DOI URL |
| [23] |
R. Zheng, J.P. Du, S. Gao, H. Somekawa, S. Ogata, N. Tsuji, Acta Mater. 198, 35 (2020)
DOI URL |
| [24] | A.H. King, S. Shekhar, J. Master. Sci. 41, 7675 (2006) |
| [25] |
A. Ostapovets, P. Šedá, A. Jäger, P. Lejček, Scr. Mater. 64, 470 (2011)
DOI URL |
| [26] | D.D. Yin, C.J. Boehlert, L.J. Long, G.H. Huang, H. Zhou, J. Zheng, Q.D. Wang, Int. J. Plast. (2021). https://doi.org/10.1016/j.ijplas.2020.102878 |
| [27] |
F. Roters, P. Eisenlohr, L. Hantcherli, D.D. Tjahjanto, T.R. Bieler, D. Raabe, Acta Mater. 58, 1152 (2010)
DOI URL |
| [28] |
H. Wang, B. Raeisinia, P.D. Wu, S.R. Agnew, C.N. Tomé, Int. J. Solids Struct. 47, 2905 (2010)
DOI URL |
| [29] | W. Sylwestrowicz, E.O. Hall, Proc. Phys. Soc. Sect. B 64, 495 (1951) |
| [30] |
N. Stanford, D. Atwell, A. Beer, C. Davies, M.R. Barnett, Scr. Mater. 59, 772 (2008)
DOI URL |
| [31] | G. Song, C. Zhang, Y. Xin, N. Tsuji, X. Huang, B. Guan, X. He, Acta Metall. Sin.-Engl. Lett. 37, 1066 (2024) |
| [32] |
S.R. Agnew, Ö. Duygulu, Int. J. Plast. 21, 1161 (2005)
DOI URL |
| [33] | E.O. Hall, Proc. Phys. Soc. Sect. B 64, 747 (1951) |
| [34] |
W. Yuan, S.K. Panigrahi, J.Q. Su, R.S. Mishra, Scr. Mater. 65, 994 (2011)
DOI URL |
| [35] |
Y.N. Wang, C.I. Chang, C.J. Lee, H.K. Lin, J.C. Huang, Scr. Mater. 55, 637 (2006)
DOI URL |
| [36] |
H. Yu, Y. Xin, M. Wang, Q. Liu, J. Mater. Sci. Technol. 34, 248 (2018)
DOI URL |
| [37] | Y. Wen, B. Guan, Y. Xin, C. Liu, P. Wu, G. Huang, Q. Liu, Scr. Mater. 210, 28 (2022) |
| [38] |
B. Guan, Y. Xin, X. Huang, C. Liu, P. Wu, Q. Liu, Int. J. Plast. 153, 103276 (2022)
DOI URL |
| [1] | Shudong Yang, Xiaoqian Guo, Chao Ma, Lu Shen, Lingyu Zhao, Wei Zhu. Anisotropic Mechanical Behavior in an Extruded AZ31 Magnesium Alloy: Experimental and Crystal Plasticity Modeling [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(9): 1527-1544. |
| [2] | Yuanxiao Dai, Yue Zhang, Mei Wang, Jie Liu, Yaobo Hu, Bin Jiang. Three-Point Bending Deformation Behavior of a High Plasticity Mg-2.6Er-0.6Zr Alloy Sheet [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(7): 1109-1126. |
| [3] | Hongyang Zhang, Huihui Nie, Zhijian Li, Hongsheng Chen, Wei Liang, Liuwei Zheng. Evolution of Microstructure and Mechanical Properties of AZ31 Sheets with Different Initial Microstructures During the Corrugated Wide Limit Alignment Process [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(6): 1012-1028. |
| [4] | Jiaqing Liu, Libo Zhou, Zeai Peng, Boyi Chen, Yijie Tan, Jian Chen, Weiying Huang, Cong Li. Anisotropy Evolution of Tensile Properties in Laser Powder Bed Fusion-Fabricated Inconel 625 Alloy at High Temperature [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(4): 555-569. |
| [5] | Ji-Peng Yang, Hai-Feng Zhang, Hong-Chao Ji, Nan Jia. Molecular Dynamics Simulations of Micromechanical Behaviours for AlCoCrFeNi2.1 High Entropy Alloy during Nanoindentation [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(2): 218-232. |
| [6] | Yonghua Chen, Zhenzhen Tian, Fubing Yu, Mingyi Wu, Wenhui Yao, Yuantai He, Yuan Yuan, Zhihui Xie, Guozhi Wu, Jiahao Wu, Fusheng Pan, Liang Wu. Evaluation of Corrosion Resistance for ZIF-67@Co-M (M = Fe, Al, Ni) LDHs Composite Coatings Based on AZ31 Magnesium Alloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(11): 2001-2023. |
| [7] | Zhen-Liang Li, Xin-Lei Zhang. Evolution of Deformation Substructure and MgxZnyCaz Metastable Phase in Fine-Grained Mg Alloys [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(1): 71-85. |
| [8] | Jian Zang, Jianrong Liu, Qingjiang Wang, Haibing Tan, Bohua Zhang, Xiaolin Dong, Zibo Zhao. Microstructure and Texture Evolution of Ti65 Alloy during Thermomechanical Processing [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(1): 107-120. |
| [9] | Zulai Li, Yingxing Zhang, Junlei Zhang, Xiang Chen, Suokun Chen, Lujian Cui, Shengjie Han. Microstructure Characteristics, Texture Evolution and Mechanical Properties of Al-Mg-Si-Mn-xCu Alloys via Extrusion and Heat Treatment [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(9): 1501-1522. |
| [10] | Xue Han, Dan Zhang, Song Zhang, Mohammed R. I. Abueida, Lili Tan, Xiaopeng Lu, Qiang Wang, Huanye Liu. Fatigue and Corrosion Fatigue Properties of Mg-Zn-Zr-Nd Alloys in Glucose-Containing Simulated Body Fluids [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(9): 1533-1550. |
| [11] | Lingyu Zhao, Wei Zhu, Chao Zhang, Yunchang Xin, Changjian Yan, Yao Cheng, Zhaoyang Jin. Detwinning and Anneal-Hardening Behaviors of Pre-Twinned AZ31 Alloys under Cryogenic Loading [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(9): 1551-1563. |
| [12] | Chunyu Yue, Bowen Zheng, Ming Su, Yuxiang Wang, Xiaojiao Zuo, Yinxiao Wang, Xiaoguang Yuan. Effect of Y and Ce Micro-alloying on Microstructure and Hot Tearing of As-Cast Al-Cu-Mg Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(6): 939-952. |
| [13] | Xiaofeng Ding, Zehao Wu, Tong Li, Jianxun Chen, Yuanhua Shuang, Baosheng Liu. Effect of Three-High Rotary Piercing Process on Microstructure, Texture and Mechanical Properties of Magnesium Alloy Seamless Tube [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(6): 953-968. |
| [14] | Sen Wang, Hucheng Pan, Caixia Jiang, Zhihao Zeng, Zhen Pan, Weineng Tang, Chubin Yang, Yuping Ren, Gaowu Qin. Microstructure and Mechanical Property of the Large Cross-Sectioned Mg-Gd-Y-Zn-Zr Alloy Produced by Small Extrusion Ratio [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(6): 999-1006. |
| [15] | Yue-Hui Dang, Sheng-Lin Liu, Xiao-Lei Ai, Xiao-Wei Feng, Bo Feng, Zhuo Tian, Ying-Fei Lin, Huan-Tao Chen, Kai-Hong Zheng. Microstructure and Mechanical Behavior of Mg-Based Bimetal Plates with High Formability Sleeve by Co-extrusion [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(3): 499-512. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
