Acta Metallurgica Sinica (English Letters) ›› 2025, Vol. 38 ›› Issue (4): 555-569.DOI: 10.1007/s40195-025-01828-y
Previous Articles Next Articles
Jiaqing Liu1, Libo Zhou1,2,3(), Zeai Peng1, Boyi Chen1, Yijie Tan1, Jian Chen1, Weiying Huang1, Cong Li1(
)
Received:
2024-10-23
Revised:
2024-11-12
Accepted:
2024-12-19
Online:
2025-04-10
Published:
2025-02-18
Contact:
Libo Zhou, Jiaqing Liu, Libo Zhou, Zeai Peng, Boyi Chen, Yijie Tan, Jian Chen, Weiying Huang, Cong Li. Anisotropy Evolution of Tensile Properties in Laser Powder Bed Fusion-Fabricated Inconel 625 Alloy at High Temperature[J]. Acta Metallurgica Sinica (English Letters), 2025, 38(4): 555-569.
Add to citation manager EndNote|Ris|BibTeX
C | Cr | Ni | Co | Mo | Al | Ti | Mn | Nb | Fe | Si | P | Cu | O |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.012 | 20.77 | Bal. | 0.15 | 8.46 | 0.31 | 0.34 | 0.35 | 3.77 | 0.72 | 0.051 | < 0.01 | < 0.01 | 0.015 |
Table 1 Chemical composition of Inconel 625 alloy (mass fraction, %)
C | Cr | Ni | Co | Mo | Al | Ti | Mn | Nb | Fe | Si | P | Cu | O |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.012 | 20.77 | Bal. | 0.15 | 8.46 | 0.31 | 0.34 | 0.35 | 3.77 | 0.72 | 0.051 | < 0.01 | < 0.01 | 0.015 |
Fig. 1 a Particle morphology and b particle size distribution of Inconel 625 alloy, c schematic of the samples in the orientation, d the fabricated samples
Fig. 6 Internal surface IPF and PF of Inconel 625 alloy formed by LPBF by using three building strategies: a1 and b1 0° sample, a2 and b2 45°sample, a3 and b3 90° sample
Fig. 9 Tensile stress-strain curves of the LPBF Inconel 625 alloy at a 200 °C, b 400 °C and c 600 °C, d showing the work hardening characteristics at the tensile temperature of 600 °C
Specimen | Temperature | Ultimate tensile strength (MPa) | Yield strength (MPa) | Ductility (%) |
---|---|---|---|---|
0° sample | RT | 1313.82 ± 11.03 | 720.97 ± 2.85 | 31.65 ± 2.19 |
200 °C | 1311.12 ± 12.81 | 698.24 ± 3.80 | 35.45 ± 1.20 | |
400 °C | 1210.24 ± 15.86 | 647.55 ± 4.41 | 33.45 ± 0.49 | |
600 °C | 1091.04 ± 15.77 | 615.91 ± 4.63 | 28.35 ± 0.78 | |
45° sample | RT | 1195.19 ± 15.05 | 703.13 ± 4.17 | 25.32 ± 2.26 |
200 °C | 1158.15 ± 12.38 | 656.25 ± 3.64 | 26.65 ± 2.47 | |
400 °C | 1047.37 ± 10.41 | 619.55 ± 3.35 | 21.55 ± 0.21 | |
600 °C | 1015.28 ± 13.66 | 623.62 ± 2.22 | 22.05 ± 2.32 | |
90° sample | RT | 1249.06 ± 14.06 | 635.34 ± 3.08 | 36.85 ± 2.90 |
200 °C | 1172.35 ± 11.32 | 612.52 ± 2.16 | 37.2 ± 1.98 | |
400 °C | 1047.36 ± 14.21 | 554.35 ± 4.09 | 35.55 ± 2.31 | |
600 °C | 1047.56 ± 16.73 | 571.51 ± 4.94 | 30.45 ± 2.47 |
Table 2 Tensile properties of the LPBF-fabricated Inconel 625 alloy at various temperatures
Specimen | Temperature | Ultimate tensile strength (MPa) | Yield strength (MPa) | Ductility (%) |
---|---|---|---|---|
0° sample | RT | 1313.82 ± 11.03 | 720.97 ± 2.85 | 31.65 ± 2.19 |
200 °C | 1311.12 ± 12.81 | 698.24 ± 3.80 | 35.45 ± 1.20 | |
400 °C | 1210.24 ± 15.86 | 647.55 ± 4.41 | 33.45 ± 0.49 | |
600 °C | 1091.04 ± 15.77 | 615.91 ± 4.63 | 28.35 ± 0.78 | |
45° sample | RT | 1195.19 ± 15.05 | 703.13 ± 4.17 | 25.32 ± 2.26 |
200 °C | 1158.15 ± 12.38 | 656.25 ± 3.64 | 26.65 ± 2.47 | |
400 °C | 1047.37 ± 10.41 | 619.55 ± 3.35 | 21.55 ± 0.21 | |
600 °C | 1015.28 ± 13.66 | 623.62 ± 2.22 | 22.05 ± 2.32 | |
90° sample | RT | 1249.06 ± 14.06 | 635.34 ± 3.08 | 36.85 ± 2.90 |
200 °C | 1172.35 ± 11.32 | 612.52 ± 2.16 | 37.2 ± 1.98 | |
400 °C | 1047.36 ± 14.21 | 554.35 ± 4.09 | 35.55 ± 2.31 | |
600 °C | 1047.56 ± 16.73 | 571.51 ± 4.94 | 30.45 ± 2.47 |
Fig. 10 SEM images showing the fracture morphologies of the 0° a1-a3, 45° b1-b3 and 90° c1-c3 samples under tensile testing at 200 °C a1, b1 and c1, 400 °C a2, b2 and c2, and 600 °C a3, b3 and c3
Fig. 14 Anisotropy rate of ultimate tensile strength, yield strength and ductility between 0° sample and 45° sample a-c, between 0° sample and 90° sample d-f, as the tensile temperature increased from room temperature to 600 °C
[1] | K.D. Ramkumar, W.S. Abraham, V. Viyash, N. Arivazhagan, A.M. Rabel, J. Manuf. Proces. 25, 306 (2017) |
[2] | X. Yan, S. Gao, C. Chang, J. Huang, K. Khanlari, D. Dong, W. Ma, N. Fenineche, H. Liao, M. Liu, J. Mater. Proces. Technol. 288, 116878 (2021) |
[3] | K.S. Kim, T.H. Kang, M.E. Kassner, K.T. Son, K.A. Lee, Addit. Manuf. 35, 101377 (2020) |
[4] | K. Li, M. Zhang, Y. Hou, Y. Wu, C. Ji, J. He, P. Jin, D. Wu, L. Zhu, Thin-Wall. Struct. 198, 111743 (2024) |
[5] | H. Zhang, D. Zhang, J. Zhu, M. Ding, X. An, D. Wu, M. Feng, G. Sha, W. Hu, T. Yang, Mater. Sci. Eng. A 900, 146506 (2024) |
[6] | X. Luo, C. Yang, D. Li, L.C. Zhang, Acta Metall. Sin.-Engl. Lett. 37, 17 (2024) |
[7] | L. Zhou, B. Peng, J. Chen, Y. Ren, Y. Niu, W. Qiu, J. Tang, Z. Li, W. Chen, W. Huang, C. Li, Acta Metall. Sin.-Engl. Lett. 37, 2029 (2024) |
[8] | C. Pleass, S. Jothi, M. Krishnan, Mater. Sci. Eng. A 869, 144744 (2023) |
[9] | J. Zhu, C. Shao, F. Lu, K. Feng, P. Liu, S. Chu, Y. Feng, H. Kokawa, Z. Li, Scr. Mater. 221, 114945 (2022) |
[10] | Y. Hu, X. Lin, Y. Li, Y. Ou, X. Gao, Q. Zhang, W. Li, W. Huang, J. Alloy. Compd. 870, 159426 (2021) |
[11] | F. Chen, Q. Wang, C. Zhang, Z. Huang, M. Jia, Q. Shen, J. Alloy. Compd. 917, 165572 (2022) |
[12] | F. Zhou, X. Hu, Y. Zhou, Z. Xu, C. Guo, G. Li, Z. Li, Y. Huang, Q. Zhu, Mater. Sci. Eng. A 877, 145144 (2023) |
[13] | K.V. Yang, P. Rometsch, C.H.J. Davies, A. Huang, X. Wu, Mater. Des. 154, 275 (2018) |
[14] | W. Jiang, Y. Deng, X. Guo, Mater. Sci. Eng. A 887, 145743 (2023) |
[15] | H. Zhu, J. Sun, Y. Guo, X. Xu, Y. Huang, Z. Jiang, G. Wu, J. Li, W. Liu, Mater. Sci. Eng. A 894, 146195 (2024) |
[16] | X. Wang, Z. Liu, J. Li, L. Chen, B. Li, Optik 270, 169930 (2022) |
[17] | J. Zhu, K. Feng, H. Kokawa, Z. Li, J. Alloy. Compd. 1001, 175087 (2024) |
[18] | G. Marchese, S. Parizia, M. Rashidi, A. Saboori, D. Manfredi, D. Ugues, M. Lombardi, E. Hryha, S. Biamino, Mater. Sci. Eng. A 769, 138500 (2020) |
[19] | H. Sharma, J. Singla, V. Singh, J. Singh, H. Kumar, A. Bansal, A.K. Singla, D.K. Goyal, M.K. Gupta, J. Mater. Res. Technol. 27, 5910 (2023) |
[20] | Z. Yang, H. Sun, S.L. Shang, Z.K. Liu, A.M. Beese, Materialia 34, 102067 (2024) |
[21] | L. Zhou, Z. Peng, J. Chen, Y. Ren, Y. Niu, W. Qiu, J. Tang, Z. Li, C. Li, Mater. Sci. Eng. A 911, 146925 (2024) |
[22] | Z. Zhang, Z. Li, B. Wang, C. Yang, C. Wang, N. Wang, Opt. Laser Technol. 174, 110683 (2024) |
[23] | H.Z. Lu, H.W. Ma, W.S. Cai, X. Luo, Z. Wang, C.H. Song, S. Yin, C. Yang, Acta Mater. 219, 117261 (2021) |
[24] | H.Z. Lu, L.H. Liu, C. Yang, X. Luo, C.H. Song, Z. Wang, J. Wang, Y.D. Su, Y.F. Ding, L.C. Zhang, Y.Y. Li, J. Mater. Sci. Technol. 101, 205 (2022) |
[25] | W. Ma, G. Liu, B. Hu, Y. Zhang, J. Liu, Mater. Sci. Eng. A 587, 313 (2013) |
[26] | L. Zhou, J. Sun, J. Chen, W. Chen, Y. Ren, Y. Niu, C. Li, W. Qiu, J. Alloy. Compd. 928, 167130 (2022) |
[27] | L. Zhou, X. Bi, J. Sun, Z. Hu, C. Li, J. Chen, Y. Ren, Y. Niu, W. Qiu, W. Chen, Acta Metall. Sin.-Engl. Lett. 36, 1947 (2023) 36, 1947 (2023) |
[28] | Y. Wang, C. Yu, L. Xing, K. Li, J. Chen, W. Liu, J. Ma, Z. Shen, J. Mater. Process. Technol. 281, 116591 (2020) |
[29] | S. Li, Q. Wei, Y. Shi, Z. Zhu, D. Zhang, J. Mater. Sci. Technol. 31, 946 (2015) |
[30] | C. Li, R. White, X.Y. Fang, M. Weaver, Y.B. Guo, Mater. Sci. Eng. A 705, 20 (2017) |
[31] | Y.M. Ren, X. Lin, X. Fu, H. Tan, J. Chen, W.D. Huang, Acta Mater. 132, 82 (2017) |
[32] | L. Zhou, Z. Peng, Z. Hu, J. Liu, J. Chen, Y. Ren, Y. Niu, W. Qiu, W. Chen, C. Li, Adv. Eng. Mater. 26, 2301785 (2024) |
[33] | Z. Hao, Y. Xu, Y. Fan, Mater. Today Commun. 39, 109040 (2024) |
[34] | G. Huang, G. He, Y. Liu, K. Huang, Addit. Manuf. 82, 104025 (2024) |
[35] | L. Zhou, J. Sun, X. Bi, J. Chen, W. Chen, Y. Ren, Y. Niu, C. Li, W. Qiu, T. Yuan, Vacuum 205, 111454 (2022) |
[36] | K. Hrutkay, D. Kaoumi, Mater. Sci. Eng. A 599, 196 (2014) |
[37] | Z. Li, Y. Cui, W. Yan, D. Zhang, Y. Fang, Y. Chen, Q. Yu, G. Wang, H. Ouyang, C. Fan, Q. Guo, D.B. Xiong, S. Jin, G. Sha, N. Ghoniem, Z. Zhang, Y.M. Wang, Mater. Today 50, 79 (2021) |
[38] | Y. Zhou, D. Kong, R. Li, X. He, C. Dong, Acta Metall. Sin.-Engl. Lett. 37, 587 (2024) |
[39] | H. Zhou, H. Su, Y. Guo, Y. Liu, D. Zhao, P. Yang, Z. Shen, L. Xia, M. Guo, Acta Metall. Sin.-Engl. Lett. 36, 1433 (2023) |
[40] | C. Yang, Z.Y. Huang, T. Chen, H.Z. Lu, H.W. Ma, H.Z. Li, A. Yan, P.X. Li, H. Hosoda, W.S. Cai, Scr. Mater. 248, 116122 (2024) |
[41] | X.L. Nan, H.Y. Wang, L. Zhang, J.-B. Li, Q.C. Jiang, Scr. Mater. 67, 443 (2012) |
[42] | W. Huang, Y. Li, R.E.N. Yanjie, J. Sun, Z. Xia, L. Zhou, C. Li, J. Chen, Y. Niu, Y. Zhao, Vacuum 206, 111447 (2022) |
[43] | J. Chen, X. Liao, J. Shu, L. Zhou, C. Li, Y. Ren, Y. Niu, Mater. Sci. Eng. A 826, 141962 (2021) |
[44] | X. Yan, S. Gao, C. Chang, J. Huang, K. Khanlari, D. Dong, W. Ma, N. Fenineche, H. Liao, M. Liu, J. Mater. Pro. Technol. 288, 116878 (2021) |
[45] | B. Clausen, T. Leffers, T. Lorentzen, O.B. Pedersen, P.V. Houtte, Scr. Mater. 42, 91 (1999) |
[46] | B.E. Carroll, T.A. Palmer, A.M. Beese, Acta Mater. 87, 309 (2015) |
[47] | J. Lee, M. Terner, S. Jun, H.U. Hong, E. Copin, P. Lours, Mater. Sci. Eng. A 790, 139720 (2020) |
[48] | K. Gopinath, A.K. Gogia, S.V. Kamat, U. Ramamurty, Acta Mater. 57, 1243 (2009) |
[1] | Zheng Liu, De-Chun Ren, Lian-Min Zhang, Ai-Li Ma, Hai-Bin Ji, Yu-Gui Zheng. Synergistic Improvement in Ductility and Hot Nitric Acid Corrosion Resistance of LPBF Ti-6Al-4V Alloy via Hot Isostatic Pressing [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(1): 102-106. |
[2] | Qian-Long Ren, Shuai Yuan, Shi-Yu Luan, Jin-Hui Wang, Xiao-Wei Li, Xiao-Yu Liu. High-Temperature Stability of Mg-1Al-12Y Alloy Containing LPSO Phase and Mechanism of Its Portevin-Le Chatelier (PLC) Effect [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(6): 982-998. |
[3] | Iman Ansarian, Reza Taghiabadi, Saeid Amini, Mohammad Hossein Mosallanejad, Luca Iuliano, Abdollah Saboori. Improvement of Surface Mechanical and Tribological Characteristics of L-PBF Processed Commercially Pure Titanium through Ultrasonic Impact Treatment [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(6): 1034-1046. |
[4] | Yiqi Zhou, Decheng Kong, Ruixue Li, Xing He, Chaofang Dong. Corrosion of Duplex Stainless Steel Manufactured by Laser Powder Bed Fusion: A Critical Review [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(4): 587-606. |
[5] | Zhen Zhang, Zhanyong Zhao, Xiaofeng Li, Beibei Wang, Peikang Bai. Effect of Direct Aging on Corrosion Behavior of AlSi10Mg Alloy Fabricated by Laser Powder Bed Fusion [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(2): 266-282. |
[6] | Libo Zhou, Biao Peng, Jian Chen, Yanjie Ren, Yan Niu, Wei Qiu, Jianzhong Tang, Zhou Li, Wei Chen, Weiying Huang, Cong Li. Microstructure Evolution and High Strength-Ductility Synergy of Ti-13Nb-13Zr-2Ta Alloy Fabricated by Laser Powder Bed Fusion [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(12): 2029-2044. |
[7] | Yu-Hang Chu, Liang-Yu Chen, Bo-Yuan Qin, Wenbin Gao, Fanmin Shang, Hong-Yu Yang, Lina Zhang, Peng Qin, Lai-Chang Zhang. Unveiling the Contribution of Lactic Acid to the Passivation Behavior of Ti-6Al-4V Fabricated by Laser Powder Bed Fusion in Hank’s Solution [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 102-118. |
[8] | Xuan Luo, Chao Yang, Dongdong Li, Lai-Chang Zhang. Laser Powder Bed Fusion of Beta-Type Titanium Alloys for Biomedical Application: A Review [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 17-28. |
[9] | Sheng Cao, Hongyu Liu, Jin Jiang, Ke He, Binghua Lv, Hao Zhang, Lujie Zhang, Jingrong Meng, Hao Deng, Xiaodong Niu. Effect of Heat Treatment on Gradient Microstructure and Tensile Property of Laser Powder Bed Fusion Fabricated 15-5 Precipitation Hardening Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 181-195. |
[10] | Xinxing Xiong, Sijie Yu, Pei Wang, Junfang Qi, Haichao Li, Xulei Wang, Michael Ryan, Debajyoti Bhaduri. Effect of TiB2 Addition on Microstructure and Mechanical Properties of AA8009 Alloy Fabricated by Laser Additive Manufacturing [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 67-77. |
[11] | Haotian Zhou, Haijun Su, Yinuo Guo, Yuan Liu, Di Zhao, Peixin Yang, Zhonglin Shen, Le Xia, Min Guo. Formation and Evolution of Surface Morphology in Overhang Structure of IN718 Superalloy Fabricated by Laser Powder Bed Fusion [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(9): 1433-1453. |
[12] | Xiaojia Nie, Ze Chen, Yang Qi, Hu Zhang, Haihong Zhu. Spreading Behavior and Hot Cracking Mechanism of Single Tracks in High Strength Al-Cu-Mg-Mn Alloy Fabricated by Laser Powder Bed Fusion [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(9): 1454-1464. |
[13] | Kudakwashe Nyamuchiwa, Yuan Tian, Kanwal Chadha, Lu Jiang, Thomas Dorin, Clodualdo Aranas Jr. Precipitation Behaviour at the Interface of an Additively Manufactured M789-N709 Hybrid Alloy [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(8): 1353-1370. |
[14] | Yuan Tian, Kanwal Chadha, Clodualdo Aranas Jr.. Deformation-Induced Strengthening Mechanism in a Newly Designed L-40 Tool Steel Manufactured by Laser Powder Bed Fusion [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(1): 21-34. |
[15] | Mohammad Hossein Mosallanejad, Saber Sanaei, Masoud Atapour, Behzad Niroumand, Luca Iuliano, Abdollah Saboori. Microstructure and Corrosion Properties of CP-Ti Processed by Laser Powder Bed Fusion under Similar Energy Densities [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(9): 1453-1464. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||