Acta Metallurgica Sinica (English Letters) ›› 2025, Vol. 38 ›› Issue (7): 1109-1126.DOI: 10.1007/s40195-025-01843-z
Previous Articles Next Articles
Yuanxiao Dai1, Yue Zhang1, Mei Wang1, Jie Liu2(), Yaobo Hu1,3,4(
), Bin Jiang1,3,4
Received:
2024-12-02
Revised:
2025-01-10
Accepted:
2025-01-13
Online:
2025-07-10
Published:
2025-04-01
Contact:
Jie Liu, liujie@szpu.edu.cn;Yaobo Hu, yaobohu@cqu.edu.cn
Yuanxiao Dai, Yue Zhang, Mei Wang, Jie Liu, Yaobo Hu, Bin Jiang. Three-Point Bending Deformation Behavior of a High Plasticity Mg-2.6Er-0.6Zr Alloy Sheet[J]. Acta Metallurgica Sinica (English Letters), 2025, 38(7): 1109-1126.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 a Schematic of sampling and dimensions of the bending specimen, b three-point bending test setup, c schematic of the observation surface of the three-point bending sample
Slip mode | Miller indices | Number of slip variants | Taylor axis | Number of Taylor axis |
---|---|---|---|---|
Basal <a> | {0001} <11$\bar{2}$0> | 3 | <1$\bar{1}$00> | 3 |
Prismatic <a> | {10$\bar{1}$0} <1$\bar{2}$10> | 3 | <0001> | 1 |
Pyramidal <a> | {10$\bar{1}$1} <1$\bar{2}$10> | 6 | <0$\bar{1}$12> | 6 |
Pyramidal II <c + a> | {11$\bar{2}$2} <11$\bar{2}$3> | 6 | <$\bar{1}$100> | 3 |
Table 1 Typical slip systems and Taylor axis in magnesium alloys [33]
Slip mode | Miller indices | Number of slip variants | Taylor axis | Number of Taylor axis |
---|---|---|---|---|
Basal <a> | {0001} <11$\bar{2}$0> | 3 | <1$\bar{1}$00> | 3 |
Prismatic <a> | {10$\bar{1}$0} <1$\bar{2}$10> | 3 | <0001> | 1 |
Pyramidal <a> | {10$\bar{1}$1} <1$\bar{2}$10> | 6 | <0$\bar{1}$12> | 6 |
Pyramidal II <c + a> | {11$\bar{2}$2} <11$\bar{2}$3> | 6 | <$\bar{1}$100> | 3 |
Fig. 2 EBSD results of extruded sheet: a inverse pole figure map, b grain boundary diagram, c grain size distribution histogram, d KAM image, e (0001) pole figure
Ultimate bending depth (mm) | Maximum bending load (N) | Bending yield strength (MPa) | Ultimate bending strength (MPa) | Failure bending strain (%) |
---|---|---|---|---|
6.1 | 1720.3 | 75.1 ± 1.5 | 250.5 ± 2.0 | 39.3 ± 0.4 |
Table 2 Three-point bending properties of extruded Mg-Er-Zr alloy sheet
Ultimate bending depth (mm) | Maximum bending load (N) | Bending yield strength (MPa) | Ultimate bending strength (MPa) | Failure bending strain (%) |
---|---|---|---|---|
6.1 | 1720.3 | 75.1 ± 1.5 | 250.5 ± 2.0 | 39.3 ± 0.4 |
Fig. 6 Inverse pole figure map, grain boundary diagram, and grain size distribution histogram of the extruded sheet with 7% bending strain: a, b, c CZ, d, e, f NLZ, g, h, i TZ
Fig. 7 Inverse pole figure map, grain boundary diagram, and grain size distribution histogram of the extruded sheet with 21% bending strain: a, b, c CZ, d, e, f NLZ, g, h, i TZ
Fig. 8 Inverse pole figure map, grain boundary diagram, and grain size distribution histogram of the extruded sheet with 35% bending strain: a, b, c CZ, d, e, f NLZ, g, h, i TZ
Fig. 11 Distribution of SF for the initial sheet across various slip systems: a, b basal slip, c, d prismatic slip, e, f tensile twinning under tensile stress, g, h tensile twinning under compressive stress
[1] | J. Song, J. Chen, X. Xiong, X. Peng, D. Chen, F. Pan, J. Magnes. Alloy. 10, 863 (2022) |
[2] | Y. Yang, X. Xiong, J. Chen, X. Peng, D. Chen, F. Pan, J. Magnes. Alloy. 11, 2611 (2023) |
[3] | T. Zhao, Y. Hu, C. Zhang, B. He, T. Zheng, A. Tang, F. Pan, J. Magnes. Alloy. 10, 387 (2022) |
[4] | S. Sandlöbes, M. Friák, J. Neugebauer, D. Raabe, Mater. Sci. Eng. A 576, 61 (2013) |
[5] | B. Yang, C. Shi, X. Ye, J. Teng, R. Lai, Y. Cui, D. Shi, D. Guan, G. Xie, Y. Li, A. Chiba, J. Alloys Compd. 893, 162346 (2022) |
[6] | Y. Dai, Q. Yi, Y. Hu, B. Jiang, F. Pan, J. Mater. Res. Technol. 28, 4275 (2024) |
[7] | H. Zhang, J. Zhao, R. Li, B. Liu, S. Li, S. Sha, Y. Zhang, M. Xu, Y. Tang, Acta Metall. Sin.-Engl. Lett. 37, 1367 (2024) |
[8] | G.M. Lee, J.U. Lee, S.H. Park, Mater. Sci. Eng. A 855, 143940 (2022) |
[9] | Q.Y. Liao, D.Z. Zhao, Q.C. Le, W.X. Hu, Y.C. Jiang, W.Y. Zhou, L. Ren, D.D. Li, Z.Y. Yin, Acta Metall. Sin.-Engl. Lett. 37, 1115 (2024) |
[10] | X. Luo, Z. Feng, T. Yu, J. Luo, T. Huang, G. Wu, N. Hansen, X. Huang, Acta Mater. 183, 398 (2020) |
[11] |
S. Sandlöbes, M. Friák, S. Korte-Kerzel, Z. Pei, J. Neugebauer, D. Raabe, Sci. Rep. 7, 10458 (2017)
DOI PMID |
[12] | G. Wu, X. Tong, C. Wang, R. Jiang, W. Ding, J. Magnes. Alloy. 11, 3463 (2023) |
[13] | H. Ovri, J. Markmann, J. Barthel, M. Kruth, H. Dieringa, E.T. Lilleodden, Acta Mater. 244, 118550 (2023) |
[14] | T. Zheng, Y. Hu, C. Zhang, T. Zhao, F. Pan, A. Tang, Mater. Charact. 179, 111299 (2021) |
[15] | G. Liu, J. Zhang, G. Xi, R. Zuo, S. Liu, Acta Mater. 141, 1 (2017) |
[16] | S.R. Agnew, L. Capolungo, C.A. Calhoun, Acta Mater. 82, 255 (2015) |
[17] | J.A. Yasi, T. Nogaret, D.R. Trinkle, Y. Qi, L.G. Hector, W.A. Curtin, Mater. Sci. Eng. A 17, 055012 (2009) |
[18] | R. Ahmad, B. Yin, Z. Wu, W. Curtin, Acta Mater. 172, 161 (2019) |
[19] | S. Zhang, X. Xie, L. Ouyang, C. Dai, H. Li, X. Xue, S. Pei, K. Wang, J. Wang, F. Pan, J. Alloys Compd. 1004, 175926 (2024) |
[20] | S. Zhou, A. Tang, T. Liu, Y. Huang, P. Peng, J. Zhang, N. Hort, R. Willumeit-Römer, F. Pan, J. Alloys Compd. 947, 169669 (2023) |
[21] | T. Zheng, Y. Hu, C. Zhang, T. Zhao, B. Jiang, F. Pan, A. Tang, J. Mater. Sci. Technol. 172, 166 (2024) |
[22] | X. Hua, Q. Yang, D. Zhang, F. Meng, C. Chen, Z. You, J. Zhang, S. Lv, J. Meng, J. Mater. Sci. Technol. 53, 174 (2020) |
[23] | M. Wang, Z. Li, Y. Hu, Y. Dai, L. Fu, B. Jiang, F. Pan, J. Mater. Res. Technol. 24, 4685 (2023) |
[24] | L. Jin, J. Dong, J. Sun, A.A. Luo, Int. J. Plast. 72, 218 (2015) |
[25] | I. Aslam, B. Li, Z. McClelland, S.J. Horstemeyer, Q. Ma, P.T. Wang, M.F. Horstemeyer, Mater. Sci. Eng. A 590, 168 (2014) |
[26] | J. Singh, M.S. Kim, S.H. Choi, Int. J. Plast. 117, 33 (2019) |
[27] | S.H.M. Azghandi, M. Weiss, M.R. Barnett,JOM72, 2586 (2020) |
[28] | Y. Ishiguro, X. Huang, Y. Tsukada, T. Koyama, Y. Chino, Int. J. Miner. Metall. Mater. 29, 1334 (2022) |
[29] | W. Ren, J. Li, R. Xin, Scr. Mater. 170, 6 (2019) |
[30] | J.U. Lee, S.H. Kim, D.H. Lee, H.J. Kim, Y.M. Kim, S.H. Park, J. Magnes. Alloy. 10, 2475 (2022) |
[31] | M. Okayasu, T. Ogawara, M. Matsushima, J. Mater. Eng. Perform. (2024). https://doi.org/10.1007/s11665-024-09822-8 |
[32] | Metallicmaterials—Bendtest:[S]. China Standard Publishing House, 2010. |
[33] | Y.B. Chun, C.H.J. Davies, Metall. Mater. Trans. A 42, 4113 (2011) |
[34] | Y.B. Chun, M. Battaini, C.H.J. Davies, S.K. Hwang, Metall. Mater. Trans. A 41, 3473 (2010) |
[35] | L. Wang, G. Huang, H. Zhang, Y. Wang, L. Yin, J. Mater. Process. Technol. 213, 844 (2013) |
[36] | F. Ning, X. Zhou, Q. Le, X. Li, L. Ma, W. Jia, J. Mater. Res. Technol. 8, 6232 (2019) |
[37] | N.M. Della Ventura, S. Kalácska, D. Casari, T.E.J. Edwards, A. Sharma, J. Michler, R. Logé, X. Maeder, Mater. Des. 197, 109206 (2021) |
[38] | S.G. Desinghege, P. Hodgson, M. Weiss, J. Mater. Process. Technol. 289, 116951 (2021) |
[39] | C. He, B. Jiang, Q. Wang, Y. Chai, J. Zhao, M. Yuan, G. Huang, D. Zhang, F. Pan, Mater. Sci. Eng. A 799, 140290 (2021) |
[40] | Z. Zhang, J. Zhang, J. Xie, S. Liu, W. Fu, R. Wu, Int. J. Plast. 162, 103548 (2023) |
[41] | S.G. Hong, S.H. Park, C.S. Lee, Scr. Mater. 64, 145 (2011) |
[42] | L. Wu, A. Jain, D.W. Brown, G.M. Stoica, S.R. Agnew, B. Clausen, D.E. Fielden, P.K. Liaw, Acta Mater. 56, 688 (2008) |
[43] | S. Groh, E.B. Marin, M.F. Horstemeyer, D.J. Bammann, Mater. Sci. Eng. A 17, 075009 (2009) |
[44] | X.Z. Tang, Y.F. Guo, S. Xu, Y.S. Wang, Philos. Mag. 95, 2013 (2015) |
[45] | L. Pi, J. He, X. Zhang, Y. Chen, M. Liang, G. Xue, X. Yang, M. Xing, K. Xiong, S. Zhang, Y. Mao, Mater. Sci. Eng. A 874, 145046 (2023) |
[46] | C. He, M. Yuan, B. Jiang, L. Liu, Q. Wang, Y. Chai, W. Liu, G. Huang, D. Zhang, F. Pan, Mater. Sci. Eng. A 832, 142397 (2022) |
[1] | Hongbin Liu, Zhenqiang Xing, Yitong Yang, Jingyu Pang, Wen Li, Zhengwang Zhu, Long Zhang, Aimin Wang, Haifeng Zhang, Hongwei Zhang. A Novel BCC/B2 Structural Nb38Ti35Al15V6Cr4(TaHfMoW)2 Refractory High-Entropy Alloy with Excellent Specific Yield Strength-Plasticity Synergy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 396-406. |
[2] | Ji-Peng Yang, Hai-Feng Zhang, Hong-Chao Ji, Nan Jia. Molecular Dynamics Simulations of Micromechanical Behaviours for AlCoCrFeNi2.1 High Entropy Alloy during Nanoindentation [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(2): 218-232. |
[3] | Mingtao Ge, Xinguang Wang, Yongmei Li, Zihao Tan, Xipeng Tao, Yanhong Yang, Liang Wang, Chunhua Zhang, Song Zhang, Yizhou Zhou, Xiaofeng Sun. Effect of Ta on Tensile Behavior and Deformation Mechanism of a Nickel-Based Single Crystal Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(11): 1921-1934. |
[4] | Jin-Wang Liu, Xian Luo, Bin Huang, Yan-Qing Yang, Wen-Jie Lu, Xiao-Wei Yi, Hong Wang. Nano-Twinning and Martensitic Transformation Behaviors in 316L Austenitic Stainless Steel During Large Tensile Deformation [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(5): 758-770. |
[5] | Xue Yin, Yan-Kun Dou, Xin-Fu He, Ke Jin, Cheng-Long Wang, Ya-Guang Dong, Cun-Yong Wang, Yun-Fei Xue, Wen Yang. Effects of Nb Addition on Charpy Impact Properties of TiVTa Refractory High-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(3): 405-416. |
[6] | Ke Wang, Honghui Li, Yu Zhou, Jingfeng Wang, Renlong Xin, Qing Liu. Dislocation Slip and Crack Nucleation Mechanism in Dual-Phase Microstructure of Titanium Alloys: A Review [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(3): 353-365. |
[7] | Yun Zhang, Chen Jiang, Shaoheng Sun, Wei Xu, Quan Yang, Yongjun Zhang, Shiwei Tian, Xiaoge Duan, Zhe Xu, Haitao Jiang. Microstructural Evolution during Tensile Deformation in TRC-ZA21 Magnesium Alloy with Different Loading Directions and Strain Rates [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(2): 192-214. |
[8] | Tao Ying, Mingdi Yu, Yiwen Chen, Huan Zhang, Jingya Wang, Xiaoqin Zeng. Dominant Deformation Mechanisms in Mg-Zn-Ca Alloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(12): 1973-1982. |
[9] | Ying Han, Jiaqi Sun, Jiapeng Sun, Guoqing Zu, Weiwei Zhu, Xu Ran. High-Temperature Creep Behavior and Microstructural Evolution of a Cu-Nb Co-Alloyed Ferritic Heat-Resistant Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(6): 789-801. |
[10] | Hai-Feng Zhang, Hai-Le Yan, Feng Fang, Nan Jia. Orientation-Dependent Mechanical Responses and Plastic Deformation Mechanisms of FeMnCoCrNi High-entropy Alloy: A Molecular Dynamics Study [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(11): 1511-1526. |
[11] | Jiang-Li Ning, Bo Xu, Yun-Li Feng, Xu-Dong Li, Xin-Kang Li, Wei-Ping Tong. Tension-Compression Yield Asymmetry Influenced by the Variable Deformation Modes in Gradient Structure Mg Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(2): 252-266. |
[12] | Mao-Kai Chen, Jun Xie, De-Long Shu, Gui-Chen Hou, Shu-Ling Xun, Jin-Jiang Yu, Li-Rong Liu, Xiao-Feng Sun, Yi-Zhou Zhou. Effect of Long-Term Thermal Exposures on Tensile Behaviors of K416B Nickel-Based Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(12): 1699-1708. |
[13] | Kun-Kun Deng, Cui-Ju Wang, Kai-Bo Nie, Xiao-Jun Wang. Recent Research on the Deformation Behavior of Particle Reinforced Magnesium Matrix Composite: A Review [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(4): 413-525. |
[14] | Zhao-Yang Jin, Nan-Nan Li, Kai Yan, Jian Wang, Jing Bai, Hongbiao Dong. Deformation Mechanism and Hot Workability of Extruded Magnesium Alloy AZ31 [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(1): 71-81. |
[15] | Yulong Zhao, Zheng Chen, Jian Long, Tao Yang. Influence of Temperature on the Inverse Hall–Petch Effect in Nanocrystalline Materials: Phase Field Crystal Simulation [J]. Acta Metallurgica Sinica (English Letters), 2014, 27(1): 81-86. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||