Acta Metallurgica Sinica (English Letters) ›› 2025, Vol. 38 ›› Issue (3): 481-496.DOI: 10.1007/s40195-025-01815-3
Previous Articles Next Articles
Liping Wu1, Junhua Dong1(), Xianfei Zheng2, Zhongying Wang3, Xiaoying Sun4, Xiuling Shang4, Wei Ke1, Changgang Wang1(
)
Received:
2024-10-09
Revised:
2024-11-27
Accepted:
2024-12-06
Online:
2025-03-10
Published:
2025-01-22
Contact:
Junhua Dong, jhdong@imr.ac.cn;Changgang Wang, cgwang@imr.ac.cn
Liping Wu, Junhua Dong, Xianfei Zheng, Zhongying Wang, Xiaoying Sun, Xiuling Shang, Wei Ke, Changgang Wang. Effect of K2HPO4 Concentration on the Formation, Structure, Composition and Protectiveness of Conversion Coating Deposited on AZ31 Magnesium Alloy[J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 481-496.
Add to citation manager EndNote|Ris|BibTeX
Fig. 2 Surface morphologies of AZ31 Mg alloy after polarization at − 0.8 VSCE in pH 9.5 of deaerated a1-a4 0.05 M, b1-b4 0.1 M [18], c1-c4 0.2 M and d1-d4 0.5 M K2HPO4 solutions for a1 151 s, a2 453 s, a3 1335 s, a4 50 ks, b1 100 s, b2 200 s, b3 590 s, b4 24 ks, c1 86 s, c2 205 s, c3 670 s, c4 5 ks, d1 5 s, d2 40 s, d3 318 s, d4 3 ks
CK2HPO4 (M) | Time (s) | Position | Mg (at.%) | O (at.%) | P (at.%) | K (at.%) |
---|---|---|---|---|---|---|
0.05 | 151 | 90.95 | 9.05 | × | × | |
453 | A | 82.40 | 16.57 | 1.03 | × | |
B | 17.64 | 61.48 | 12.56 | 8.32 | ||
1335 | C | 85.38 | 14.11 | 0.51 | × | |
D | 11.70 | 67.00 | 12.80 | 8.50 | ||
50 k | 6.27 | 70.57 | 13.54 | 9.62 | ||
0.1 | 100 | 91.32 | 8.68 | × | × | |
200 | E | 85.79 | 13.34 | 0.86 | × | |
F | 48.69 | 38.64 | 8.18 | 4.50 | ||
590 | G | 87.29 | 12.12 | 0.59 | × | |
H | 38.54 | 45.86 | 9.81 | 5.80 | ||
24 k | 15.58 | 64.07 | 12.31 | 8.04 | ||
0.2 | 91.46 | 8.54 | × | × | ||
86 | I | 83.30 | 15.27 | 1.43 | × | |
J | 36.92 | 52.58 | 6.91 | 3.59 | ||
205 | K | 85.37 | 13.62 | 1.01 | × | |
L | 31.52 | 56.35 | 7.82 | 4.31 | ||
5 k | 25.59 | 57.21 | 10.92 | 6.28 | ||
0.5 | 5 | Q | 86.08 | 13.45 | 1.17 | × |
R | 37.06 | 52.60 | 7.18 | 3.14 | ||
40 | M | 87.20 | 12.32 | 0.48 | × | |
N | 8.39 | 58.30 | 9.20 | 4.11 | ||
318 | O | 88.58 | 11.22 | 0.20 | × | |
P | 8.07 | 75.52 | 10.91 | 5.50 | ||
3 k | 3.18 | 76.25 | 12.07 | 8.50 |
Table 1 Elemental content of different positions on the corresponding polarized surfaces
CK2HPO4 (M) | Time (s) | Position | Mg (at.%) | O (at.%) | P (at.%) | K (at.%) |
---|---|---|---|---|---|---|
0.05 | 151 | 90.95 | 9.05 | × | × | |
453 | A | 82.40 | 16.57 | 1.03 | × | |
B | 17.64 | 61.48 | 12.56 | 8.32 | ||
1335 | C | 85.38 | 14.11 | 0.51 | × | |
D | 11.70 | 67.00 | 12.80 | 8.50 | ||
50 k | 6.27 | 70.57 | 13.54 | 9.62 | ||
0.1 | 100 | 91.32 | 8.68 | × | × | |
200 | E | 85.79 | 13.34 | 0.86 | × | |
F | 48.69 | 38.64 | 8.18 | 4.50 | ||
590 | G | 87.29 | 12.12 | 0.59 | × | |
H | 38.54 | 45.86 | 9.81 | 5.80 | ||
24 k | 15.58 | 64.07 | 12.31 | 8.04 | ||
0.2 | 91.46 | 8.54 | × | × | ||
86 | I | 83.30 | 15.27 | 1.43 | × | |
J | 36.92 | 52.58 | 6.91 | 3.59 | ||
205 | K | 85.37 | 13.62 | 1.01 | × | |
L | 31.52 | 56.35 | 7.82 | 4.31 | ||
5 k | 25.59 | 57.21 | 10.92 | 6.28 | ||
0.5 | 5 | Q | 86.08 | 13.45 | 1.17 | × |
R | 37.06 | 52.60 | 7.18 | 3.14 | ||
40 | M | 87.20 | 12.32 | 0.48 | × | |
N | 8.39 | 58.30 | 9.20 | 4.11 | ||
318 | O | 88.58 | 11.22 | 0.20 | × | |
P | 8.07 | 75.52 | 10.91 | 5.50 | ||
3 k | 3.18 | 76.25 | 12.07 | 8.50 |
Fig. 3 Cross-section morphologies of AZ31 Mg alloy after respective polarization at − 0.8 VSCE in deaerated a 0.05 M, b 0.1 M [18], c 0.2 M, d 0.5 M K2HPO4 solutions with pH 9.5 for 50 ks, 24 ks, 5 ks, 3 ks
Fig. 4 Elemental cross-section EPMA images of AZ31 Mg alloy after respective polarization at − 0.8 VSCE in a 0.05 M, b 0.1 M [18], c 0.2 M, d 0.5 M K2HPO4 solutions with pH 9.5 for 50 ks, 24 ks, 5 ks, 3 ks
Fig. 5 Variation of a P, b K, c Mg, d O content along the thickness of the coatings deposited on AZ31 Mg alloy after respective polarization at − 0.8 VSCE in deaerated 0.05 M, 0.1 M, 0.2 M and 0.5 M K2HPO4 solution with pH 9.5 for 50 ks, 24 ks, 5 ks, 3 ks
Fig. 6 XPS spectraof the coatings deposited on AZ31 Mg alloy after respective polarization at − 0.8 VSCE in deaerated 0.05 M, 0.1 M [18], 0.2 M and 0.5 M K2HPO4 solutions with pH 9.5 for 50 ks, 24 ks, 5 ks, 3 ks
Fig. 7 XRD patterns of AZ31 Mg alloy after respective polarization at − 0.8 VSCE in deaerated 0.05 M, 0.1 M [18], 0.2 M and 0.5 M K2HPO4 solutions with pH 9.5 for 50 ks, 24 ks, 5 ks, 3 ks
Fig. 8 a Struvite-K, b MgHPO4, c Mg(OH)2 content across the coating deposited on AZ31 Mg alloy after respective polarization at − 0.8 VSCE in deaerated 0.05 M, 0.1 M, 0.2 M and 0.5 M K2HPO4 solutions with pH 9.5 for 50 ks, 24 ks, 5 ks, 3 ks
Fig. 9 a and b Bode plots measured in 0.1 M NaCl solution after respective polarization of AZ31 Mg alloy at − 0.8 VSCE in deaerated 0.05 M, 0.1 M, 0.2 M and 0.5 M K2HPO4 solutions with pH 9.5 for 50 ks, 24 ks, 5 ks and 3 ks; c equivalent circuit
CK2HPO4 (M) | Ys (mS·sn·cm−2) | ns | Rs (Ω·cm2) | YH (mS·sn·cm−2) | nH | RH (Ω·cm2) | Yf (mS·sn·cm−2) | nf | Rf (Ω·cm2) | Yd (mS·sn·cm−2) | nd | Rd (Ω·cm2) | RL (Ω·cm2) | L (H) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.05 | 5.1 × 10−8 | 0.9 | 45.0 | 2.5 × 10−5 | 0.9 | 3806.1 | 1.2 × 10−5 | 0.9 | 97.1 | 8.3 × 10−4 | 0.9 | 1590.2 | 127,000.2 | 43,900.2 |
0.1 | 0.9 × 10−8 | 0.8 | 54.3 | 2.1 × 10−5 | 0.7 | 15,710.6 | 1.6 × 10−5 | 0.4 | 10,160.2 | 1.0 × 10−6 | 0.9 | 3208.4 | 127,500.3 | 106,200.3 |
0.2 | 9.8 × 10−8 | 0.8 | 56.1 | 3.2 × 10−5 | 0.8 | 4859.3 | 2.7 × 10−5 | 0.7 | 1841.0 | 3.1 × 10−4 | 0.6 | 2878.8 | 4151.0 | 60,290.1 |
0.5 | 5.7 × 10−8 | 1 | 18.2 | 3.7 × 10−5 | 0.9 | 3971.8 | 2.6 × 10−5 | 0.2 | 246.9 | 3.4 × 10−4 | 0.5 | 2217.9 | 4076.2 | 90,720.1 |
Table 2 Fitting parameters of the EIS spectra in Fig. 9
CK2HPO4 (M) | Ys (mS·sn·cm−2) | ns | Rs (Ω·cm2) | YH (mS·sn·cm−2) | nH | RH (Ω·cm2) | Yf (mS·sn·cm−2) | nf | Rf (Ω·cm2) | Yd (mS·sn·cm−2) | nd | Rd (Ω·cm2) | RL (Ω·cm2) | L (H) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.05 | 5.1 × 10−8 | 0.9 | 45.0 | 2.5 × 10−5 | 0.9 | 3806.1 | 1.2 × 10−5 | 0.9 | 97.1 | 8.3 × 10−4 | 0.9 | 1590.2 | 127,000.2 | 43,900.2 |
0.1 | 0.9 × 10−8 | 0.8 | 54.3 | 2.1 × 10−5 | 0.7 | 15,710.6 | 1.6 × 10−5 | 0.4 | 10,160.2 | 1.0 × 10−6 | 0.9 | 3208.4 | 127,500.3 | 106,200.3 |
0.2 | 9.8 × 10−8 | 0.8 | 56.1 | 3.2 × 10−5 | 0.8 | 4859.3 | 2.7 × 10−5 | 0.7 | 1841.0 | 3.1 × 10−4 | 0.6 | 2878.8 | 4151.0 | 60,290.1 |
0.5 | 5.7 × 10−8 | 1 | 18.2 | 3.7 × 10−5 | 0.9 | 3971.8 | 2.6 × 10−5 | 0.2 | 246.9 | 3.4 × 10−4 | 0.5 | 2217.9 | 4076.2 | 90,720.1 |
Fig. 10 H2 volume collected in 0.1 M NaCl solution as a function of immersion time after respective polarization of AZ31 Mg alloy at − 0.8 VSCE in deaerated 0.05 M, 0.1 M, 0.2 M and 0.5 M K2HPO4 solutions with pH 9.5 for 50 ks, 24 ks, 5 ks and 3 ks
Compounds and ions | Gibbs free Energy (kJ・mol−1) |
---|---|
HPO42−[ | −1089.26 |
OH−[ | −157.244 |
MgHPO4 [ | −1566.87 |
Mg(OH)2 [ | −834 |
K+[ | −283.27 |
H+[ | 0 |
H2O [ | −237.129 |
Struvite-K [ | −3263 |
Table 3 Standard Gibbs free energy of the compounds and ions
Compounds and ions | Gibbs free Energy (kJ・mol−1) |
---|---|
HPO42−[ | −1089.26 |
OH−[ | −157.244 |
MgHPO4 [ | −1566.87 |
Mg(OH)2 [ | −834 |
K+[ | −283.27 |
H+[ | 0 |
H2O [ | −237.129 |
Struvite-K [ | −3263 |
[1] | G.Q. Wang, H.H. Wan, Z. Rao, G.F. Li, H.F. Liu, J. Alloy. Compd. 1005, 176026 (2024) |
[2] | J. Singh, A.W. Hashmi, S. Ahmad, Y.B. Tian, Inorg. Chem. Commun. 169, 113111 (2024) |
[3] | L.P. Wu, J.H. Dong, W. Ke, Electrochim. Acta 105, 554 (2013) |
[4] | J. Yuan, X.F. Cui, B. Dai, X.L. Fu, Y.F. Cui, J.H. Peng, J. Alloy. Compd. 1010, 177113 (2025) |
[5] | S. Kannan, K. Madhu, M.A. Alotaibi, Surf. Coat. Technol. 493, 131260 (2024) |
[6] | Y.Q. Li, R.Q. Hou, P.L. Jiang, K. Li, J. Wang, D. Mei, L.H. Wu, S.J. Zhu, R. Willumeit-Romere, S.K. Guan, Corros. Sci. 239, 112387 (2024) |
[7] | D.F. Chen, D. Mei, L. Chen, C. Wang, J. Bai, F. Xue, C.L. Chu, L.G. Wang, S.J. Zhu, S.K. Guan, Appl. Surf. Sci. 672, 160790 (2024) |
[8] | L.T. Wang, R.T. Xu, L.J. Meng, Q.Y. Zhang, Z. Qian, J. Chen, C.J. Pan, Biomater. Adv. 163, 213960 (2024) |
[9] | X.P. Li, E.L. Lin, K.X. Wang, R.G. Ke, S.Z. Kure-Chu, X.F. Xiao, Ceram. Int. 50, 36838 (2024) |
[10] | W.Y. Li, Y.H. Wang, C.J. Che, X.Y. Fu, Y. Liu, D.Z. Xue, S. Zhang, R. Niu, H. Zhang, Y. Cao, S.Y. Song, L.R. Cheng, H.J. Zhang, Bioact. Mater. 40, 474 (2024) |
[11] | A.S. Gnedenkov, S.L. Sinebryukhov, A.D. Nomerovskii, V.S. Marchenko, AYu. Ustinov, S.V. Gnedenkov, J. Magnes. Alloy. 12, 2909 (2024) |
[12] | M.Y. Ma, D.B. Pokharel, J.H. Dong, L.P. Wu, R.Y. Zhao, Y. Zhu, J.R. Hou, J.Y. Xie, S.H. Sui, C.G. Wang, W. Ke, J. Alloy. Compd. 848, 156506 (2020) |
[13] | S. Graeser, W. Postl, H.P. Bojar, P. Berlepsch, T. Armbruster, T. Raber, K. Ettinger, F. Walter, Eur. J. Mineral. 20, 629 (2008) |
[14] | A.S. Wagh, S.Y. Sayenko, V.A. Shkuropatenko, R.V. Tarasov, M.P. Dykiy, Y.O. Svitlychniy, V.D. Virych, E.A. Ulybkina, J. Hazard. Mater. 302, 241 (2016) |
[15] |
F. Tamimi, D.L. Nihouannen, D.C. Bassett, S. Ibasco, U. Gbureck, J. Knowles, A. Wright, A. Flynn, S.V. Komarova, J.E. Barralet, Acta Biomater. 7, 2678 (2011)
DOI PMID |
[16] | S. Ibasco, F. Tamimi, R. Meszaros, D. Le Nihouannen, S. Vengallatore, E. Harvey, J.E. Barralet, Acta Biomater. 5, 2338 (2009) |
[17] | T. Ishizaki, R. Kudo, T. Omi, K. Teshima, T. Sonoda, I. Shigematsu, M. Sakamoto, Electrochim. Acta 62, 19 (2012) |
[18] | L.P. Wu, L. Zhao, J.H. Dong, W. Ke, N. Chen, Electrochim. Acta 145, 71 (2014) |
[19] | R.J. Kirkpatrick, Am. Mineral. 60, 798 (1975) |
[20] | L.P. Wu, L. Zhao, J.H. Dong, W. Ke, X.F. Li, Res. Rev. J. Mater. Sci. 3, 1 (2015) |
[21] |
T.S.N. Sankara Narayanan, L.L.S. Park, M.H. Lee, J. Mater. Chem. B 2, 3365 (2014)
DOI PMID |
[22] | J. Farzidayeri, R. Taylor, V. Bedekar, Appl. Energy 351(12180), 8 (2023) |
[23] | S.H. Mohamed, M. Raaif, Surf. Coat. Technol. 205, 525 (2010) |
[24] | F. Ahimou, C.J. Boonaert, Y. Adriaensen, P. Jacques, P. Thonart, M. Paquot, P.G. Rouxhet, J. Colloid Interf. Sci. 309, 49 (2007) |
[25] |
J. Christophe, P. Boonaert, P.G. Rouxhet, Appl. Environ. Microb. 66, 2548 (2000)
DOI PMID |
[26] | S. Feliu, A. Pardo, M.C. Merino, A.E. Coy, F. Viejo, R. Arrabal, Appl. Surf. Sci. 255, 4102 (2009) |
[27] | B. Lothenbach, B.W. Xu, F. Winnefeld, Appl. Geochem. 111, 104450 (2019) |
[28] | R.L. Frost, S.J. Palmer, R.E. Pogson, J. Therm. Anal. Calori. 107, 1143 (2011) |
[29] | L.P. Wu, C. Liu, J. Wei, J.H. Dong, L. Zhao, C. Li, W. Ke, Y.Q. Chen, C.G. Wang, Acta Metall Sin. -Engl. Lett. 36, 1397 (2023) |
[30] | L.P. Wu, Z.D. Yang, G.W. Qin, J. Alloy. Compd. 694, 1133 (2017) |
[31] | S. Fintová, J. Drábiková, F. Pastorek, J. Tkacz, I. Kuběna, L. Trško, B. Hadzima, J. Minda, P. Doležal, J. Wasserbauer, P. Ptáček, Surf. Coat. Technol. 357, 638 (2019) |
[32] | J.P. Zhu, C.W. Fan, C.H. Ning, W. Wang, Ceram. Int. 49, 37604 (2023) |
[33] | W. Luo, K. Qi, Y.B. Qiu, X.P. Guo, Prog. Org. Coat. 178, 107507 (2023) |
[34] | A. Jangde, S. Kumar, C. Blawert, Corros. Sci. 240, 112386 (2024) |
[35] | L. Montastruc, C. Azzaro-Pantel, L. Pibouleau, S. Domenech, Chem. Eng. Process. Process Intensif. 43, 1289 (2004) |
[36] | E. Méndez, Biochem. Mol. Biol. Educ. 48, 247 (2020) |
[37] | A. La Iglesia, Estud. Geol. 65, 109 (2009) |
[38] | H.E. Barner, R.V. Scheuerm, Handbook of Thermochemical Data for Compounds and Aqueous Species (Wiley, Hoboken, 1979) |
[39] | M.I. Lelet, M.L. Yakunkova, D.A. Mikhailov, J.N. Lelet, J. Chem. Eng. Data 66, 2723 (2021) |
[1] | Wei Qiu, Shuang-Long Li, Zhao-Yuan Lu, Sen-Mao Zhang, Jian Chen, Wei Chen, Lang Gan, Wei Li, Yan-Jie Ren, Jun Luo, Mao-Hai Yao, Wen Xie. Effects of CeO2 Content on the Microstructure and Mechanical Properties of ZK60 Mg Alloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(2): 287-298. |
[2] | Li-Lan Gao, Jiang Ma, Yan-Song Tan, Xiao-Hao Sun, Qi-Jun Gao, De-Bao Liu, Chun-Qiu Zhang. Effect of Free-End Torsion on the Corrosion and Mechanical Properties for Mg-3Zn-0.2Ca Alloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(1): 59-70. |
[3] | Zhenfei Jiang, Bo Hu, Zixin Li, Fanjin Yao, Jiaxuan Han, Dejiang Li, Xiaoqin Zeng, Wenjiang Ding. A Review of Magnesium Alloys as Structure-Function Integrated Materials [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(8): 1301-1338. |
[4] | Ze-Song Wei, Zi-You Ding, Lei Cai, Shao-Xia Ma, Dong-Qing Zhao, Lan-Yue Cui, Cheng-Bao Liu, Yuan-Sheng Yang, Yuan-Ding Huang, Rong-Chang Zeng. Exfoliation Corrosion of As-Extruded Mg-1Li-1Ca: the Influence of the Superficial Layer [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(8): 1339-1353. |
[5] | Gang Zeng, Hong Liu, Jing-Peng Xiong, Jian-Long Li, Yong Liu. Enhanced Grain Refining Effect of Mg-Zr Master Alloy on Magnesium Alloys via a Synergistic Strategy Involving Heterogeneous Nucleation and Solute-Driven Growth Restriction [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(8): 1354-1366. |
[6] | Xiaoxue Wang, Jingjing Guo, Zihao Zeng, Peng Zhou, Rongqiao Wang, Xiuchun Liu, Kai Gao, Jingli Sun, Yong Yuan, Fuhui Wang. A Semi-Mechanistic Model for Predicting the Service Life of Composite Coatings on VW63Z Magnesium Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(7): 1161-1176. |
[7] | Qian Wang, Peng Yu, Haoran Lin, Chongzhi Guo, Xiaoqiang Hu. Joined AZ31B Magnesium Alloys with Ag Interlayer by Ultrasonic-Induced Transient Liquid Phase Bonding in Air [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(7): 1177-1185. |
[8] | Bishan Cheng, Depeng Li, Baikang Xing, Ruiqing Hou, Pingli Jiang, Shijie Zhu, Shaokang Guan. Effect of Ca Micro-Alloying on the Microstructure and Anti-Corrosion Property of Mg0.5Zn0.2Ge Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(7): 1147-1160. |
[9] | Qian-Long Ren, Shuai Yuan, Shi-Yu Luan, Jin-Hui Wang, Xiao-Wei Li, Xiao-Yu Liu. High-Temperature Stability of Mg-1Al-12Y Alloy Containing LPSO Phase and Mechanism of Its Portevin-Le Chatelier (PLC) Effect [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(6): 982-998. |
[10] | Zhaochen Yu, Kaixuan Feng, Shuyun Deng, Yang Chen, Hong Yan, Honggun Song, Chao Luo, Zhi Hu. Quasi-in-situ Observation and SKPFM Studies on Phosphate Protective Film and Surface Micro-Galvanic Corrosion in Biological Mg-3Zn-xNd Alloys [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(4): 648-664. |
[11] | Shuang Guo, Tianyu Liu, Tianjiao Luo, Yingju Li, Xiaohui Feng, Qiuyan Huang, Ce Zheng, Cheng Zhu, Yuansheng Yang, Weirong Li, Feng Li. Effect of Ag on High-Temperature Oxidation Behavior of Mg-6.5Gd-5.6Y-0.1Nd-0.01Ce-0.4Zr Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(11): 1843-1857. |
[12] | Wenjun Tian, Yunxuan Zhou, Tao Deng, Tao Chen, Jun Tan, Xianhua Chen, Fusheng Pan. Probing the Structural Stability, Mechanical, Electronic, and Thermodynamic Properties of Mg-Y-Zn Ternary Compounds via First-Principles Calculations [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(10): 1703-1720. |
[13] |
Chao Wang, Xi Zhao, Yayun He, Dingxia Zheng.
Implementation of Balanced Strength and Toughness of VW93A Rare-Earth Magnesium Alloy with Regulating the Overlapping Structure of Lamellar LPSO Phase and |
[14] | Liping Wu, Chen Liu, Jie Wei, Junhua Dong, Lin Zhao, Chao Li, Wei Ke, Yiqing Chen, Changgang Wang. Influence of pH on the Formation, Composition and Protectiveness of Fluoride Conversion Film Deposited on AZ31 Magnesium Alloy in KF Solution [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(9): 1397-1408. |
[15] | Xi-Zhao Shi, Zhong-Yu Cui, Jie Li, Bing-Chen Hu, Yi-Qiang An, Xin Wang, Hong-Zhi Cui. Atmospheric Corrosion of AZ31B Magnesium Alloy in the Antarctic Low-Temperature Environment [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(9): 1421-1432. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||