Acta Metallurgica Sinica (English Letters) ›› 2025, Vol. 38 ›› Issue (3): 465-480.DOI: 10.1007/s40195-024-01797-8
Previous Articles Next Articles
Tianyi Zeng1,2, Zirui Luo1, Hao Chen2,3, Wei Wang2,4(), Ke Yang2
Received:
2024-06-25
Revised:
2024-08-26
Accepted:
2024-10-06
Online:
2025-03-10
Published:
2024-12-11
Contact:
Wei Wang, wangw@imr.ac.cn
Tianyi Zeng, Zirui Luo, Hao Chen, Wei Wang, Ke Yang. Flow Behavior and Dynamic Recrystallization Mechanism of CSS-42L Bearing Steel During Hot Compression Deformation[J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 465-480.
Add to citation manager EndNote|Ris|BibTeX
C | Cr | Co | Mo | Ni | V | Si | Nb | Mn | P | S | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|
0.08 | 12.5 | 11.6 | 4.19 | 2.11 | 0.53 | 0.24 | 0.03 | 0.2 | 0.005 | 0.005 | Bal. |
Table 1 Chemical composition of CSS-42L bearing steel used in this work (wt%)
C | Cr | Co | Mo | Ni | V | Si | Nb | Mn | P | S | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|
0.08 | 12.5 | 11.6 | 4.19 | 2.11 | 0.53 | 0.24 | 0.03 | 0.2 | 0.005 | 0.005 | Bal. |
Fig. 2 True stress–strain curves of CSS-42L bearing steel deformed at 900–1100 °C with strain rates ($\dot{\varepsilon }$) of a 0.1, b 1, c 10 and d 20 s−1, respectively
Fig. 5 Linear relationships of a lnσ-ln $\dot{\varepsilon }$, b σ-ln $\dot{\varepsilon }$, c ln[sinh(ασ)]-ln $\dot{\varepsilon }$, d ln[sinh(ασ)]-1000/T and e lnZ-ln[sinh(ασ)]
α | n2 | Q (J/mol) | A |
---|---|---|---|
0.0045 | 7.893 | 495,449 | 2.67 × 1019 |
Table 2 Material constants in constitutive equation for CSS-42L bearing steel
α | n2 | Q (J/mol) | A |
---|---|---|---|
0.0045 | 7.893 | 495,449 | 2.67 × 1019 |
Fig. 7 a Zener-Hollomon parameter (Z) map at the true strain of 0.7 and b the linear relationship between lnZ and the flow stress at the true strain of 0.7
True strain | The highest η and corresponding hot deformation parameters (°C/0.1 s−1) | The lowest ξ and corresponding hot deformation parameters (°C/20 s−1) | ||
---|---|---|---|---|
0.4 | 0.264 | 1100 | − 1.667 | 1100 |
0.5 | 0.259 | 1100 | − 0.980 | 1000 |
0.6 | 0.262 | 1100 | − 1.054 | 1100 |
0.7 | 0.252 | 1000 | − 0.813 | 1100 |
Table 3 The highest η and the lowest ξ at various true strains and corresponding hot deformation parameters
True strain | The highest η and corresponding hot deformation parameters (°C/0.1 s−1) | The lowest ξ and corresponding hot deformation parameters (°C/20 s−1) | ||
---|---|---|---|---|
0.4 | 0.264 | 1100 | − 1.667 | 1100 |
0.5 | 0.259 | 1100 | − 0.980 | 1000 |
0.6 | 0.262 | 1100 | − 1.054 | 1100 |
0.7 | 0.252 | 1000 | − 0.813 | 1100 |
Fig. 11 a1-d1 IPF maps, a2-d2 the enlarged views of rectangle regions, a3-d3 the enlarged views of elliptical regions in IPF maps, and a4-d4 the corresponding misorientation distribution along the black arrows marked in the enlarged maps a3-d3 of samples under the hot deformation conditions of a 900 °C/20 s−1, b 1000 °C/0.1 s−1, c 1100 °C/0.1 s−1, and d 1100 °C/20 s−1, respectively
Fig. 12 TEM images showing the as-quenched microstructure of the studied steel under the hot deformation conditions of a 900 °C/20 s−1, b 1100 °C/0.1 s−1, respectively
Calculated | Hot deformation conditions | |||
---|---|---|---|---|
900 °C/20 s−1 | 1000 °C/0.1 s−1 | 1100 °C/0.1 s−1 | 1100 °C/20 s−1 | |
Effective grain size | 0.646 μm | 0.788 μm | 0.823 μm | 0.717 μm |
Ave. GOS value | 6.5° | 5.3° | 4.1° | 3.4° |
KAM value | 1.47° | 1.44° | 1.23° | 1.16° |
Table 4 Calculated effective grain sizes, average GOS values and KAM values under different hot deformation conditions
Calculated | Hot deformation conditions | |||
---|---|---|---|---|
900 °C/20 s−1 | 1000 °C/0.1 s−1 | 1100 °C/0.1 s−1 | 1100 °C/20 s−1 | |
Effective grain size | 0.646 μm | 0.788 μm | 0.823 μm | 0.717 μm |
Ave. GOS value | 6.5° | 5.3° | 4.1° | 3.4° |
KAM value | 1.47° | 1.44° | 1.23° | 1.16° |
Fig. 13 Frequency of LAGB, MAGB and HAGB in the studied steel under the hot deformation conditions of 900 °C/20 s−1, 1000 °C/0.1 s−1, 1100 °C/0.1 s−1, and 1100 °C/20 s−1, respectively
Fig. 14 GOS maps of the studied steel under the hot deformation conditions of a 900 °C/20 s−1, b 1000 °C/0.1 s−1, c 1100 °C/0.1 s−1, and d 1100 °C/20 s−1, respectively, e frequency of recrystallized, recovered and deformed grains and f relative frequency of KAM in the above four samples
[1] | J.J.C. Hoo, W.B. Green(ed.), Bearing steels:into the 21st Century (ASTM International, 1998) |
[2] | T.Y. Zeng, W. Li, N.M. Wang, W. Wang, K. Yang, Mater. Sci. Eng. A 836, 142736 (2022) |
[3] | X. Chen, L. Zheng, S. Feng, J. Li, F. Wang, H. Zhang, Mater. Sci. Eng. A 861, 144233 (2022) |
[4] | H. Chen, T. Zeng, Q. Shi, N. Wang, S. Zhang, K. Yang, W. Yan, W. Wang, J. Mater. Res. Technol. 25, 297 (2023) |
[5] | C. Liu, Q. Shi, W. Yan, C. Shen, K. Yang, Y. Shan, M. Zhao, J. Mater. Sci. Technol. 35, 266 (2019) |
[6] | H. Luo, X. Wang, Z. Liu, Z. Yang, J. Mater. Sci. Technol. 51, 130 (2020) |
[7] | B. Wu, F. Hu, Z. Wang, S. Yang, R. Zhong, C. Shang, Z. Yang, C. Zhang, Acta Metall. Sin. -Engl. Lett. 36, 694 (2023) |
[8] | J. Dong, K. Li, Z. Shao, L. Peng, C. Li, J. Mater. Sci. 58, 15845 (2023) |
[9] | M.R. Rokni, A. Zarei-Hanzaki, A.A. Roostaei, H.R. Abedi, Mater. Des. 32, 2339 (2011) |
[10] |
D. Huang, W. Feng, J. Mater. Eng. Perform. 28, 2281 (2019)
DOI |
[11] | Z. Chen, Y. Cao, Y. Miao, H. Liu, P. Fu, Y. Chen, Z. Zhao, C. Lei, D. Li, Metall. Mater. Trans. A 54, 3503 (2023) |
[12] | S. Kingklang, V. Uthaisangsuk, Metall. Mater. Trans. A 48, 95 (2017) |
[13] | E. Farabi, A. Zarei-Hanzaki, M.H. Pishbin, M. Moallemi, Mater. Sci. Eng. A 641, 360 (2015) |
[14] | H. Chen, Z. Chen, J. Liu, Y. Wu, C. Dan, S. Zhong, H. Wang, Y. Bréchet, Materialia 18, 101137 (2021) |
[15] | Y. Tian, M.C. Zhao, Y.P. Zeng, X.B. Shi, W. Yan, K. Yang, T.Y. Zeng, JOM 74, 2409 (2022) |
[16] | X. Liu, J. Fan, K. Li, Y. Song, D. Liu, R. Yuan, J. Wang, B. Tang, H. Kou, J. Li, J. Alloy. Compd. 881, 160648 (2021). |
[17] | P.W. Zhou, Y.R. Song, H.W. Jiang, Y.C. Wu, Y.Y. Zong, J. Mater. Res. Technol. 18, 3725 (2022) |
[18] | M.C. Zhao, T. Hanamura, F. Yin, H. Qiu, K. Nagai, Metall. Mater. Trans. A 39, 1691 (2008) |
[19] | H. Lu, D. Li, S. Li, Y.A. Chen, Int. J. Miner. Metall. Mater. 30, 734 (2023) |
[20] | Y.F. Xia, W. Jiang, Q. Cheng, L. Jiang, L. Jin, Trans. Nonferrous Met. Soc. China 30, 134 (2020) |
[21] | H. Mirzadeh, J.M. Cabrera, J.M. Prado, A. Najafizadeh, Mater. Sci. Eng. A 528, 3876 (2011) |
[22] | C. Liu, M.C. Zhao, T. Unenbayar, Y.C. Zhao, B. Xie, Y. Tian, Y.Y. Shan, K. Yang, Acta Metall. Sin. -Engl. Lett. 32, 825 (2019) |
[23] | L. Zhang, W. Wang, M. Babar Shahzad, Y.Y. Shan, K. Yang, Acta Metall Sin. -Engl. Lett. 32, 1161 (2019) |
[24] | Y. Cao, H. Di, R.D.K. Misra, X. Yi, J. Zhang, T. Ma, Mater. Sci. Eng. A 593, 111 (2014) |
[25] | W. Wang, L. Ren, H. Liu, R. Li, Y. Wang, J. Qi, Z. Lv, W. Fu, Steel Res. Int. 95, 2300642 (2024) |
[26] | Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark, D.R. Barker, Metall. Trans. A 15, 1883 (1984) |
[27] | S. Xu, J. He, R. Zhang, F. Zhang, X. Wang, J. Mater. Res. Technol. 23, 1738 (2023) |
[28] | C. Zhao, S. Tan, X. Jia, Y. Hu, Y. Wang, S. Bai, Q. Li, J. Huang, Steel Res. Int. 94, 2200698 (2023) |
[29] | X. Zhong, L. Wang, L. Huang, F. Liu, J. Mater. Sci. Technol. 42, 241 (2020) |
[30] | Y.Q. Wang, Y.F. Shen, N. Jia, J.J. Wang, W.Y. Xue, Mater. Today Commun. 35, 105648 (2023) |
[31] | K. Huang, R.E. Logé, Mater. Des. 111, 548 (2016) |
[32] | D. Ponge, G. Gottstein, Acta Mater. 46, 69 (1998) |
[33] | Z.B. Yang, X.Y. Gao, C.J. Zhang, X. Jiang, H. Feng, S.Z. Zhang, P. Peng, J.C. Han, T. Wang, P. Cao, Mater. Charact. 190, 112016 (2022) |
[34] | J. Yang, J. Luo, X. Li, M. Li, J. Alloy. Compd. 850, 156732 (2021) |
[35] | M.J. Wang, C.Y. Sun, M.W. Fu, Z.L. Liu, L.Y. Qian, J. Alloy. Compd. 820, 153325 (2020) |
[36] | H. Chen, H. Xu, T. Zhou, F. Yu, W. Cao, Z. Chen, J. Alloy. Compd. 917, 165498 (2022) |
[37] | H. Feng, M. Wu, H. Li, L. Xia, P. Lu, S. Zhang, H. Zhu, Z. Jiang, J. Mater. Res. Technol. 29, 4902 (2024) |
[38] | T.Y. Zeng, S.Z. Zhang, X.B. Shi, W. Wang, W. Yan, K. Yang, Corros. Sci. 209, 110781 (2022) |
[39] | T. Xue, J. Yu, Z. Wang, P. Lin, D. Sun, B. Yan, Y. Zhang, S. Jiang, Metall. Mater. Trans. A 54, 2227 (2023) |
[40] | H. Feng, Z.H. Jiang, H.B. Li, W.C. Jiao, X.X. Li, H.C. Zhu, S.C. Zhang, B.B. Zhang, M.H. Cai, Steel Res. Int. 88, 1700149 (2017) |
[41] | X. An, Y. Tian, H. Wang, Y. Shen, Z. Wang, Adv. Eng. Mater. 21, 1900132 (2019) |
[42] | M.J. Zhao, L. Huang, C.M. Li, J.H. Xu, X.Y. Li, J.J. Li, P.C. Li, C.Y. Sun, Acta Metall. Sin. -Engl. Lett. 35, 996 (2022) |
[1] | Long Liu, Zijian Zhou, Jie Yu, Xinguang Wang, Chuanyong Cui, Rui Zhang, Yizhou Zhou, Xiaofeng Sun. Hot Deformation Behavior and Workability of a New Ni-W-Cr Superalloy for Molten Salt Reactors [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(8): 1453-1466. |
[2] | Hengrui Hu, Jiayu Qin, Yunpeng Zhu, Jinhui Wang, Xiaoqiang Li, Peipeng Jin. Hot Deformation Behavior and Microstructures Evolution of GNP-Reinforced Fine-Grained Mg Composites [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(3): 407-424. |
[3] | Yong-Chao Gai, Rui Zhang, Chuan-Yong Cui, Zi-Jian Zhou, Yi Tan, Yi-Zhou Zhou, Xiao-Feng Sun. Hot Compression Behavior and Tensile Property of a Novel Ni-Co-Based Superalloy Prepared by Electron Beam Smelting Layered Solidification Technology [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(2): 283-292. |
[4] | Yanyang Wu, Qiaodan Hu, Zongye Ding, Jianguo Li. Effect of Grain Size and Compression Direction on the Hot Deformation Characteristics of High-Cr Ultra-Super-Critical Rotor Steel with Columnar Grains [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(5): 803-813. |
[5] | Hongyang Cui, Yi Tan, Rusheng Bai, Lidan Ning, Chuanyong Cui, Xiaogang You, Pengting Li. Recrystallization Behavior of the New Ni-Co-Based Superalloy with Fusion Structure Produced by Electron Beam Smelting Layered Solidification Technology [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(12): 2013-2030. |
[6] | Zhendan Yang, Xiao Zhang, Chenhao Sang, Pei Wang, Dianzhong Li. Effects of Hot Deformation on the Evolution of Microstructure in Pearlitic Steel Wire Rod [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(12): 2058-2068. |
[7] | Chang Liu, Jianbo Zhang, Yikai Yang, Xingchuan Xia, Tian He, Jian Ding, Ying Tang, Zan Zhang, Xueguang Chen, Yongchang Liu. Hot Deformation Behavior of ATI 718Plus Alloy with Different Microstructures [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1383-1396. |
[8] | H. R. Rezaei Ashtiani, A. A. Shayanpoor. Effect of Initial Grain Size on the Hot Deformation Behavior and Microstructural Evolution of Pure Copper [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(4): 662-678. |
[9] | Yulong Zhu, Yu Cao, Rui Luo, Cunjian Liu, Hongshuang Di, Gang Shu, Guangjie Huang, Qing Liu. Orientation-Dependent Characteristics for Residual Grains during Hot Deformation of Nickel-Based Alloy 925 [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(9): 1296-1306. |
[10] | Xuejian Lin, Hongjun Huang, Fuyu Dong, Yue Zhang, Xiaoguang Yuan, Bowen Zheng, Xiaojiao Zuo. Hot Deformation Behaviors in Ti-6Al-4V/(TiB+TiC) Composites [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(12): 1747-1757. |
[11] | Jun Wang, Hongchao Li, Haoxue Yang, Yu Zhang, William YiWang, Jinshan Li. Hot Deformation and Subsequent Annealing on the Microstructure and Hardness of an Al0.3CoCrFeNi High-entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(11): 1527-1536. |
[12] | Kwang-Su Kim, Lin-Xiu Du, Hyo-sung Choe, Tae-Hyong Lee, Gyong-Chol Lee. Influence of Vanadium Content on Hot Deformation Behavior of Low-Carbon Boron Microalloyed Steel [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(5): 705-715. |
[13] | Xin Cai, Xiao-Qiang Hu, Lei-Gang Zheng, Dian-Zhong Li. Hot Deformation Behavior and Processing Maps of 0.3C-15Cr-1Mo-0.5N High Nitrogen Martensitic Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(5): 693-704. |
[14] | Le Zhang, Wei Wang, M. Babar Shahzad, Yi-Yin Shan, Ke Yang. Hot Deformation Behavior of an Ultra-High-Strength Fe-Ni-Co-Based Maraging Steel [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(9): 1161-1172. |
[15] | Ning Yan, Hong-Shuang Di, Hui-Qiang Huang, R D. K. Misra., Yong-Gang Deng. Hot Deformation Behavior and Processing Maps of a Medium Manganese TRIP Steel [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(8): 1021-1031. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||