Acta Metallurgica Sinica (English Letters) ›› 2024, Vol. 37 ›› Issue (6): 1019-1033.DOI: 10.1007/s40195-024-01684-2
Previous Articles Next Articles
Hong-Wei Zhang1,2, Li-Wei Lan1,2,3, Zhe-Yu Yang1,2, Chang-Chun Li1,2, Wen-Xian Wang1,2,3()
Received:
2023-11-04
Revised:
2024-01-05
Accepted:
2024-01-08
Online:
2024-06-10
Published:
2024-04-03
Contact:
Wen-Xian Wang,Hong-Wei Zhang, Li-Wei Lan, Zhe-Yu Yang, Chang-Chun Li, Wen-Xian Wang. Microstructure Evolution and Nanomechanical Behavior of Micro-Area in Molten Pool of Selective Laser Melting (CoCrNi)82Al9Ti9 High-Entropy Alloy[J]. Acta Metallurgica Sinica (English Letters), 2024, 37(6): 1019-1033.
Add to citation manager EndNote|Ris|BibTeX
Element | Al | Co | Cr | Ni | Ti |
---|---|---|---|---|---|
Requested | 9.00 | 27.33 | 27.33 | 27.33 | 9.00 |
Tested | 9.04 | 27.27 | 27.37 | 27.37 | 8.95 |
Table 1 Chemical compositions of (CoCrNi)82Al9Ti9 powder (at.%)
Element | Al | Co | Cr | Ni | Ti |
---|---|---|---|---|---|
Requested | 9.00 | 27.33 | 27.33 | 27.33 | 9.00 |
Tested | 9.04 | 27.27 | 27.37 | 27.37 | 8.95 |
Layer thickness, t (μm) | Hatching space, h (μm) | Laser power, P (W) | Scanning speed, v (mm/s) | VED (J/mm3) |
---|---|---|---|---|
30 | 70 | 300 | 376 | 380 |
357 | 400 | |||
340 | 420 | |||
325 | 440 | |||
311 | 460 | |||
298 | 480 |
Table 2 SLM processing parameters for preparing the samples
Layer thickness, t (μm) | Hatching space, h (μm) | Laser power, P (W) | Scanning speed, v (mm/s) | VED (J/mm3) |
---|---|---|---|---|
30 | 70 | 300 | 376 | 380 |
357 | 400 | |||
340 | 420 | |||
325 | 440 | |||
311 | 460 | |||
298 | 480 |
Fig. 2 a Schematic diagram of the scanning strategy for SLM; b macroscopic morphology of different VEDs; c density and densification of different VEDs
Element | Al | Co | Cr | Ni | Ti |
---|---|---|---|---|---|
Valence electrons | 3 | 9 | 6 | 10 | 4 |
Table 3 Valence electrons of elements in alloys
Element | Al | Co | Cr | Ni | Ti |
---|---|---|---|---|---|
Valence electrons | 3 | 9 | 6 | 10 | 4 |
Fig. 4 SEM images of SLM-ed (CoCrNi)82Al9Ti9 HEAs sample at VED 440 J/mm3: a, b X-Z plane of melt pool micro-area; c, d X-Y plane of melt pool micro-area
Fig. 6 Melt pool in the X-Z plane of the SLM-ed (CoCrNi)82Al9Ti9 HEA: a IPF; b average grain size; c phase diagram; d grain boundary orientation map; e KAM distribution; f crystal type
Fig. 7 a Schematic diagram of the location of the selected point; b load displacement curve of molten pool line under different loads; c load displacement curves of melt pool micro-area at different positions under 60-mN load; d nano-hardness and modulus of different positions
Fig. 8 a SLM diagram of nano-scale intragranular needle-like microstructure inside the molten pool; b relationship between temperature and equilibrium vapor pressure for five elements. Inset shows the histogram of the elemental content of the EDS point sweep at different locations; c SLM diagram of intragranular dendrites of equiaxed crystal microstructure outside the molten pool
Element | A | B | C | D | Temperature range (K) | RMSE |
---|---|---|---|---|---|---|
Al | 12,210 | − 27.06 | 10.09 | 1.16 | 1200-3370 | 0.062 |
Ti | 26,910 | 28.53 | − 6.305 | 0.413 | 1600-4190 | 0.080 |
Cr | 21,790 | 15.86 | − 2.420 | − 0.024 | 1400-3525 | 0.010 |
Co | 25,540 | 35.6 | − 8.461 | 0.652 | 1500-3750 | 0.043 |
Ni | − 4552 | − 165.9 | 51.135 | − 4.476 | 1500-3525 | 0.055 |
Table 4 Recommended coefficients for elemental vapor pressure [48]
Element | A | B | C | D | Temperature range (K) | RMSE |
---|---|---|---|---|---|---|
Al | 12,210 | − 27.06 | 10.09 | 1.16 | 1200-3370 | 0.062 |
Ti | 26,910 | 28.53 | − 6.305 | 0.413 | 1600-4190 | 0.080 |
Cr | 21,790 | 15.86 | − 2.420 | − 0.024 | 1400-3525 | 0.010 |
Co | 25,540 | 35.6 | − 8.461 | 0.652 | 1500-3750 | 0.043 |
Ni | − 4552 | − 165.9 | 51.135 | − 4.476 | 1500-3525 | 0.055 |
[1] | J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6, 299 (2004) |
[2] | K. Han, J. Lu, V. Toplosky, R. Niu, R. Goddard, Y. Xin, R. Walsh, I. Dixon, V. Pantsyrny, IEEE Trans. Appl. Supercond. 30, 1 (2020) |
[3] | K. Han, V. Toplosky, N. Min, Y. Xin, R. Walsh, J. Lu, IEEE Trans. Appl. Supercond. 29, 1 (2019) |
[4] | D.B. Miracle, O.N. Senkov, Acta Mater. 122, 448 (2017) |
[5] | Y.L. Wang, K.C. Chan, Mater. Sci. Eng. A 876, 145164 (2023) |
[6] | Y. Cunhong, H. Hua, Q. Jiaqing, Z. Baochao, A. Xulong, Y. Yanliang, J. Mater. Res. Technol. 25, 1761 (2023) |
[7] | P. Fu, H. Su, Z. Li, P. Dai, Q. Tang, J. Alloys Compd. 921, 166141 (2022) |
[8] |
O.N. Senkov, J.D. Miller, D.B. Miracle, C. Woodward, Nat. Commun. 6, 6529 (2015)
DOI PMID |
[9] | R.K. Mishra, Adv. Mater. Process. Technol. 38, 1 (2023) |
[10] | K. Han, V. Toplosky, N. Min, J. Lu, Y. Xin, R. Walsh, IEEE Trans. Appl. Supercond. 28, 1 (2018) |
[11] | K.R. Lim, K.S. Lee, J.S. Lee, J.Y. Kim, H.J. Chang, Y.S. Na, J. Alloy. Compd. 728, 1235 (2017) |
[12] | K. Yashiro, M. Naito, Y. Tomita, Int. J. Mech. Sci. 44, 1845 (2002) |
[13] | C. Sha, Z. Zhou, Z. Xie, P. Munroe, Surf. Coat. Technol. 440, 128479 (2022) |
[14] | X. Huang, L. Huang, H. Peng, Y. Liu, B. Liu, S. Li, Scr. Mater. 200, 113898 (2021) |
[15] | J. Joseph, N. Stanford, P. Hodgson, D.M. Fabijanic, J. Alloys Compd. 726, 885 (2017) |
[16] | M. Löbel, T. Lindner, T. Mehner, T. Lampke, Entropy 20, 505 (2018) |
[17] | W. Xiong, A.X.Y. Guo, S. Zhan, C.T. Liu, S.C. Cao, J. Mater. Sci. Technol. 142, 196 (2023) |
[18] | S.A. Adekanye, R.M. Mahamood, E.T. Akinlabi, M.G. Owolabi, Mater. Technol. 51, 709 (2017) |
[19] | E.M. Sefene, J. Manuf. Syst. 63, 250 (2022) |
[20] | L.L. Zubia, C. Garay-Reyes, M. Rascón-Sánchez, I. Estrada, J. Flores-De-los-Ríos, R. Martínez-Sánchez, A. Caro-Duran, M. Maldonado-Orozco, P. Guerrero-Seáñez, M. Ruiz-Esparza-Rodriguez, Microsc. Microanal. 26, 2938 (2020) |
[21] | D. Beckers, N. Ellendt, U. Fritsching, V. Uhlenwinkel, Adv. Powder Technol. 31, 300 (2020) |
[22] | S. Liu, D. Wan, S. Guan, Y. Fu, X. Ren, Z. Zhang, J. He, Mater. Sci. Eng. A 823, 141737 (2021) |
[23] | F. Yin, X. Zhang, F. Chen, S. Hu, K. Ming, J. Zhao, L. Xie, Y. Liu, L. Hua, J. Wang, Mater. Des. 227, 111771 (2023) |
[24] | J.H. Zhu, P.K. Liaw, C.T. Liu, Mater. Sci. Eng. A 239-240, 260 (1997) |
[25] | C.T. Liu, Int. Met. Rev. 29, 168 (1984) |
[26] | S. Guo, C. Ng, J. Lu, C.T. Liu, J. Appl. Phys. 109, 103505 (2011) |
[27] | S. Guo, C.T. Liu, Prog. Nat. Sci. Mater. Int. 21, 433 (2011) |
[28] | Y. Zhang, Y.J. Zhou, Mater. Sci. Forum 561-565, 1337 (2007) |
[29] | X. Yang, Y. Zhang, Mater. Chem. Phys. 132, 233 (2012) |
[30] | K. Han, A.C. Lawson, J.T. Wood, J.D. Embury, R.B. Von Dreele, J.W. Richardson, Philos. Mag. 84, 2579 (2004) |
[31] | K. Han, K. Yu-Zhang, H. Kung, J.D. Embury, B.J. Daniels, B.M. Clemens, Philos. Mag. A 82, 1633 (2002) |
[32] | C.W. Sinclair, G. Saada, J.D. Embury, Philos. Mag. 86, 4081 (2006) |
[33] | Y. Yu, P. Shi, K. Feng, J. Liu, J. Cheng, Z. Qiao, J. Yang, J. Li, W. Liu, Acta Metall. Sin. (Engl. Lett.) 33, 1077 (2020) |
[34] | T. Yang, S. Xia, S. Liu, C. Wang, S. Liu, Y. Zhang, J. Xue, S. Yan, Y. Wang, Mater. Sci. Eng. A 648, 15 (2015) |
[35] | Y. Huang, Z. Xie, W. Li, H. Chen, B. Liu, B. Wang, J. Alloys Compd. 927, 167011 (2022) |
[36] | K. Wei, Z. Wang, F. Li, H. Zhang, X. Zeng, J. Alloys Compd. 774, 1024 (2019) |
[37] | Y. Ren, H. Wu, B. Liu, Y. Liu, S. Guo, Z.B. Jiao, I. Baker, J. Mater. Sci. Technol. 131, 221 (2022) |
[38] | L. Han, L.P.H. Jeurgens, C. Cancellieri, J. Wang, Y. Xu, Y. Huang, Y. Liu, Z. Wang, Acta Mater. 200, 857 (2020) |
[39] | L. Lan, W. Wang, Z. Cui, X. Hao, D. Qiu, J. Mater. Sci. Technol. 129, 228 (2022) |
[40] | M. Moradi, A. Hasani, Z. Pourmand, J. Lawrence, Opt. Laser Technol. 144, 107380 (2021) |
[41] | V. Mazánová, M. Heczko, J. Polák, Int. J. Fatigue 158, 106721 (2022) |
[42] | W. Le, Z. Chen, S. Naseem, K. Yan, Y. Zhao, H. Zhang, Q. Lv, Vacuum 209, 111799 (2023) |
[43] | X. Wen, C. Wang, Y. Gong, W. Liu, Chin. J. Mech. Eng. Addit. Manuf. Front. 2, 100069 (2023) |
[44] | W. Zhao, R. Liu, J. Yan, X. Wang, H. Zhang, W. Wang, J. Mater. Res. Technol. 21, 2156 (2022) |
[45] | X. Zhou, Y. Chen, Y. Jiang, Y. Li, Mater. Res. Express 6, 1265i7 (2020) |
[46] | Y. Yin, J. Zhang, Y. Ma, J. Huo, K. Zhao, X. Meng, Q. Han, J. Yin, IEEE Access 8, 62714 (2020) |
[47] | P. Agrawal, S. Thapliyal, P. Agrawal, A. Dhal, R.S. Haridas, S. Gupta, R.S. Mishra, Mater. Sci. Eng. A 872, 144938 (2023) |
[48] | B. Mondal, T. Mukherjee, N.W. Finch, A. Saha, M.Z. Gao, T.A. Palmer, T. DebRoy, Materials 16, 50 (2023) |
[49] | L. Lan, W. Wang, Z. Cui, X. Hao, Acta Metall. Sin. (Engl. Lett.) 36, 1465 (2023) |
[50] | Y. Wang, R. Li, P. Niu, Z. Zhang, T. Yuan, J. Yuan, K. Li, Intermetallics 120, 106746 (2020) |
[51] | X. Sun, H. Zhang, S. Lu, X. Ding, Y. Wang, L. Vitos, Acta Mater. 140, 366 (2017) |
[52] | Y. Chen, X. Zhang, C.J. Williams, G. Brewster, P. Xiao, Materialia 20, 101267 (2021) |
[53] | Y. Sun, G. Dou, K. Wu, P. Chen, T. Zhang, G. Peng, Int. J. Mech. Sci. 244, 108053 (2023) |
[54] | W.C. Oliver, G.M. Pharr, J. Mater. Res. 7, 1564 (1992) |
[55] | T. Zhang, Y. Feng, R. Yang, P. Jiang, Scr. Mater. 62, 199 (2010) |
[56] | Y.T. Cheng, C.M. Cheng, Appl. Phys. Lett. 73, 614 (1998) |
[57] | M. Kulka, N. Makuch, A. Piasecki, Surf. Coat. Technol. 325, 515 (2017) |
[58] | Z.H. Xu, X. Li, Philos. Mag. 86, 2835 (2006) |
[59] | A. Gouldstone, N. Chollacoop, M. Dao, J. Li, A.M. Minor, Y.L. Shen, Acta Mater. 55, 4015 (2007) |
[1] | Huanzhi Zhang, Tianxin Li, Qianqian Wang, Zhenbo Zhu, Hefei Huang, Yiping Lu. Effects of Nitrogen Doping on Microstructures and Irradiation Resistance of Ti-Zr-Nb-V-Mo Refractory High-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(6): 1007-1018. |
[2] | Mengwei Wu, Chunmei Ma, Ruiping Liu, Huadong Fu. Gyroid Triply Periodic Minimal Surface Lattice Structure Enables Improved Superelasticity of CuAlMn Shape Memory Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(6): 1047-1065. |
[3] | Hasfi F. Nurly, Jinhu Zhang, Dechun Ren, Yusheng Cai, Haibin Ji, Dongsheng Xu, Zhicheng Dong, Hao Wang, Qingmiao Hu, Jiafeng Lei, Rui Yang. Refinement of α′ Martensite by Oxygen in Selective Laser Melted Ti-6Al-4V [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(5): 777-792. |
[4] | Hulin Tang, Xiang Zhang, Chenping Zhang, Tian Zhou, Shiyue Guo, Gaopeng Xu, Rusheng Zhao, Boyoung Hur, Xuezheng Yue. Designing High-Porosity Porous Structures with Complex Geometries for Enhanced Thermal Conductivity Using Selective Laser Melting and Heat Treatment [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(5): 808-824. |
[5] | Pengwei Jiang, Gang Wang, Yaosha Wu, Zhigang Zheng, Zhaoguo Qiu, Tongchun Kuang, Jibo Huang, Dechang Zeng. Microstructure Evolution, Tribological and Corrosion Properties of Amorphous Alloy Strengthening Stainless Steel Fabricated by Selective Laser Melting in NaCl Solution [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(5): 825-839. |
[6] | Peng Chen, Wenhao Chen, Jiaxin Chen, Zhiyu Chen, Yang Tang, Ge Liu, Bensheng Huang, Zhiqing Zhang. Microstructure Evolution and Mechanical Properties of Friction Stir Welded Al-Cu-Li Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(5): 855-871. |
[7] | Hengrui Hu, Jiayu Qin, Yunpeng Zhu, Jinhui Wang, Xiaoqiang Li, Peipeng Jin. Hot Deformation Behavior and Microstructures Evolution of GNP-Reinforced Fine-Grained Mg Composites [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(3): 407-424. |
[8] | Huan Yang, Ying Liu, Jianbo Jin, Kunmao Li, Junjie Yang, Lingjian Meng, Chunbo Li, Wencai Zhang, Shengfeng Zhou. Effect of Heat Treatment on Microstructure and Mechanical Behavior of Cu-Bearing 316L Stainless Steel Produced by Selective Laser Melting [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 169-180. |
[9] | Leilei Li, Kaikai Song, Qingwei Gao, Changshan Zhou, Xiaoming Liu, Yaocen Wang, Xiaojun Bai, Chongde Cao. Enhancing Strength-Ductility Synergy of CoCrNi-Based Medium-Entropy Alloy Through Coherent L12 Nanoprecipitates and Grain Boundary Precipitates [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 78-88. |
[10] | Liwei Lan, Wenxian Wang, Zeqin Cui, Xiaohu Hao. Unique Duplex Microstructure and Porosity Effect on Mechanical Properties of AlCoCrFeNi2.1 Eutectic High-Entropy Alloys Processed by Selective Laser Melting [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(9): 1465-1481. |
[11] | Jia-Qi Zheng, Ming-Liang Wang, Wen-Na Jiao, Long-Jiang Zou, Yan Di. Effect of Ti Addition on Microstructure Evolution and Mechanical Properties of Al18Co13Cr10Fe14Ni45 Eutectic High-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(9): 1493-1501. |
[12] | Kai Hu, Lei Zhang, Yuanjie Zhang, Bo Song, Shifeng Wen, Qi Liu, Yusheng Shi. Electrochemical Corrosion Behavior and Mechanical Response of Selective Laser Melted Porous Metallic Biomaterials [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(8): 1235-1246. |
[13] | Minhao Li, Liwei Lu, Yuhui Wei, Min Ma, Weiying Huang. Deformation Behavior and Microstructure Evolution of AZ31 Mg Alloy by Forging-Bending Repeated Deformation with Multi-pass Lowered Temperature [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(8): 1317-1335. |
[14] | Wenjing Lou, Lin Cheng, Runsheng Wang, Chengyang Hu, Kaiming Wu. Atomistic Investigation of the Influence of Hydrogen on Mechanical Response during Nanoindentation in Pure Iron [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1179-1192. |
[15] | Liqing Wang, Zhen Zhang, Zhanyong Zhao, Shenghua Zhang, Peikang Bai. Mixed Grain Structure and Mechanical Property of Ti-6Al-4V-0.5BN (wt%) Alloy Fabricated by Selective Laser Melting [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(6): 917-925. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||