Acta Metallurgica Sinica (English Letters) ›› 2024, Vol. 37 ›› Issue (11): 1947-1960.DOI: 10.1007/s40195-024-01750-9
Previous Articles Next Articles
Ke Qiao1(), Kuaishe Wang1, Jia Wang1, Zhengyang Hao1, Kairui Xue1, Jun Cai1, Fengming Qiang1, Wen Wang1(
)
Received:
2024-03-30
Revised:
2024-05-09
Accepted:
2024-05-22
Online:
2024-11-10
Published:
2024-08-13
Contact:
Ke Qiao, qiaoke_2020@126.com;
Wen Wang, wangwen2025@126.comKe Qiao, Kuaishe Wang, Jia Wang, Zhengyang Hao, Kairui Xue, Jun Cai, Fengming Qiang, Wen Wang. Microstructure Evolution and Recrystallized Behavior of Friction Stir Welding Twin-Induced Plasticity Steel[J]. Acta Metallurgica Sinica (English Letters), 2024, 37(11): 1947-1960.
Add to citation manager EndNote|Ris|BibTeX
Points | Locations (mm, mm) | Points | Locations (mm, mm) |
---|---|---|---|
P1 | X = 7.5, Y = 0.0 | P5 | X = − 3.5, Y = − 3.5 |
P2 | X = 3.5, Y = 0.0 | P6 | X = − 3.5, Y = 0.0 |
P3 | X = 3.5, Y = − 3.5 | P7 | X = − 5.0, Y = 0.0 |
P4 | X = 0.0, Y = − 3.5 | P8 | X = − 6.5, Y = 0.0 |
Table 1 Locations of P1-P8 in Fig. 1b
Points | Locations (mm, mm) | Points | Locations (mm, mm) |
---|---|---|---|
P1 | X = 7.5, Y = 0.0 | P5 | X = − 3.5, Y = − 3.5 |
P2 | X = 3.5, Y = 0.0 | P6 | X = − 3.5, Y = 0.0 |
P3 | X = 3.5, Y = − 3.5 | P7 | X = − 5.0, Y = 0.0 |
P4 | X = 0.0, Y = − 3.5 | P8 | X = − 6.5, Y = 0.0 |
Fig. 2 Microstructures of BM: a inverse pole figure map, b grain boundary map; c recrystallized grain morphology; d TEM image [13] (blue, yellow, and red in c represent recrystallized grains, sub-grains, and deformed grains, respectively. AT represents annealing twin in d)
Fig. 3 Microstructures of SZ: a inverse pole figure map, b grain boundary map; c, d TEM images (pink and blue arrows represent the CDRX and DDRX grains in b, respectively; green arrow represents the recrystallization grain growth direction in c, d; blue lines represent the ATs grains grain growth direction in d; S1 and REX-G1 in c, d represent sub-grain1 and recrystallized grain1, respectively)
Fig. 4 a, d Inverse pole figure maps of P1 and P2, respectively; b, e grain boundary maps of P1 and P2, respectively; c, f recrystallization grain distribution maps of P1 and P2, respectively; g, h local magnified images of a, b, respectively (blue, yellow, and red in b, e represent recrystallized grains, sub-grains, and deformed grains, respectively. Red cycle zones in f represent recrystallized zones)
Fig. 5 a, c, e Inverse pole figure maps of P3, P4, and P5, respectively; b, d, f grain boundary maps of P3, P4, and P5, respectively; g, h local magnified images of c, d, respectively; i pole figure of T1 on the {111} plane in g (pink arrows represent the DDRX grains in b)
Fig. 7 a, b Local magnified images of Fig. 6a, b, respectively; c pole figure of grains (G1, D1-D4) of {110} and {111} planes in a (G1, D1-D4 in a represent different grains)
Fig. 9 a, b Local magnification of grain boundary and recrystallization grain distribution at the P5, respectively; c, d local magnification of grain boundary and recrystallization grain distribution at the P1, respectively; e all HAGBs, ordinary HAGBs, and ATBs at the P1-P8 (green represents LAGBs < 15°, red represents HAGBs > 15°, blue represents ATBs with a 60°/<111> orientation relationship, purple represents Σ9 grain boundaries, and indigo represents Σ27 grain boundaries)
Fig. 10 a, b Local grain boundary at the P2; c, d local grain boundary at the P4 (green represents LAGBs < 15°, red represents HAGBs > 15°, blue represents ATBs with a 60°/<111> orientation relationship, purple represents Σ9 grain boundaries, and indigo represents Σ27 grain boundaries)
[1] | C. Bruno, D. Cooman, E. Yuri, K.S. Kyu, Acta Mater. 142, 283 (2018) |
[2] | L.M. Roncery, S. Weber, W. Theisen, Scr. Mater. 66, 997 (2012) |
[3] | M. Du, W.Q. Wang, X.G. Zhang, J.F. Niu, L. Liu, Opt. Laser Technol. 149, 107911 (2022) |
[4] | J. Yoo, B. Kim, Y. Park, C. Lee, J. Mater. Sci. 50, 279 (2015) |
[5] | K. Ding, Y.F. Wang, M. Lei, T. Wei, G.Z. Wu, Y.H. Zhang, H. Pan, B.G. Zhao, Y.L. Gao, J. Manuf. Process. 76, 365 (2022) |
[6] | H.D. Wang, K.S. Wang, W. Wang, L.Y. Huang, P. Pai, H.L. Yu, Mater. Charact. 155, 109803 (2019) |
[7] | M. Zheng, J. Yang, J. Xu, J. Jiang, H. Zhang, J.P. Oliveira, Z. Li, J. Mater. Res. Technol. 23, 3997 (2023) |
[8] | H. Wang, W.F. Xu, H.J. Lu, Chin. J. Aeronaut. 36, 378 (2023) |
[9] | S.J. Lee, K. Ushioda, H. Fujii, Mater. Charact. 147, 379 (2019) |
[10] | V. Torganchuk, I. Vysotskiy, S. Malopheyev, S. Mironov, R. Kaibyshev, Mater. Sci. Eng. A 746, 248 (2019) |
[11] | S.J. Lee, Y.F. Sun, H. Fujii, Acta Mater. 148, 235 (2018) |
[12] | X.C. Liu, Y.F. Sun, H. Fujii, Mater. Des. 129, 151 (2017) |
[13] | K. Qiao, K.S. Wang, J. Wang, Z.Y. Hao, Y.T. Xiang, P. Han, J. Cai, Q. Yang, W. Wang, J. Mater. Sci. Technol. 169, 68 (2024) |
[14] | F. Qiang, W. Wang, K. Qiao, P. Peng, T. Zhang, X.H. Guan, J. Cai, Q. Meng, H.X. Zhao, K.S. Wang, Acta Metall. Sin.-Engl. Lett. 35, 1329 (2022) |
[15] |
X.C. Liu, Y.F. Sun, T. Nagira, K. Ushioda, H. Fujii, J. Mater. Sci. Technol. 35, 1412 (2019)
DOI |
[16] |
W. Wang, S.Y. Zhang, K. Qiao, K.S. Wang, P. Peng, S.N. Yuan, S.Y. Chen, T. Zhang, Q. Wang, T. Liu, Q. Yang, J. Manuf. Process. 56, 623 (2020)
DOI |
[17] | A.L. Etter, T. Baudin, N. Fredj, R. Penelle, Mater. Sci. Eng. A 445, 94 (2007) |
[18] | P.F. Yu, C.S. Wu, L. Shi, Acta Mater. 207, 116692 (2021) |
[19] | H. Gleiter, Acta Mater. 17, 1421 (1969) |
[20] | M. Azarbarmas, M. Aghaie-Khafri, J.M. Cabrera, J. Calvo, Mater. Sci. Eng. A 678, 137 (2016) |
[21] | W. Wang, S.L. Korinek, F. Brisset, L. Helbert, J. Bourgon, T. Baudin, J. Mater. Sci. 50, 2167 (2015) |
[22] | H.Z. Li, X.G. Liu, W.W. Zhang, P.W. Liu, S.L. Guo, H.Y. Qin, Q. Tian, J. Mater. Sci. 57, 2969 (2022) |
[23] | L.X. Ouyang, R. Luo, Y.W. Gui, Y. Cao, L.L. Chen, Y.J. Cui, Mater. Sci. Eng. A 788, 139638 (2020) |
[24] | R. Luo, L.L. Chen, Y.X. Zhang, Y. Cao, C.T. Peng, Y.Y. Yang, J. Alloy. Compd. 865, 158601 (2021) |
[25] | F.C. Liu, T.W. Nelson, Mater. Des. 115, 467 (2017) |
[26] | K. Wang, N.R. Tao, G. Liu, J. Lu, K. Lu, Acta Mater. 54, 5281 (2006) |
[27] | M. Kumar, A.J. Schwartz, W.E. King, Acta Mater. 50, 2599 (2002) |
[28] | W.G. Wang, B.X. Zhou, L. Feng, X. Zhang, S. Xia, Acta Metall. Sin. 42, 715 (2006) |
[29] | Y.N. Yu, The Principles of Metal Science (Metallurgical Industry Press, Beijing, 2000), p. 409 |
[30] | V. Randle, Acta Mater. 47, 4187 (1999) |
[31] | O. Mishin, G. Gottstein, Mater. Sci. Eng. A 249, 71 (1998) |
[32] | A.J. Schwartz, JOM 50, 50 (1998) |
[33] | M.A. Meyers, L.E. Murr, Acta Mater. 26, 951 (1978) |
[34] | D. Field, R. Eames, T. Lillo, Scr. Mater. 54, 983 (2006) |
[35] | A. Heidarzadeh, T. Saeid, V. Klemm, A. Chabok, Y.T. Pei, Mater. Des. 162, 185 (2019) |
[36] |
W. Wang, S.N. Yuan, K. Qiao, K.S. Wang, S.Y. Zhang, P. Peng, T. Zhang, P. Han, B. Wu, J. Yang, J. Manuf. Process. 61, 311 (2021)
DOI |
[37] | K. Qiao, K.S. Wang, W. Wang, T.Q. Li, Q. Wang, H.L. Yu, Rare Metal. Mat. Eng. 48, 788 (2019) |
[38] | K. Qiao, T. Zhang, K.S. Wang, S.N. Yuan, L.Q. Wang, S.Y. Chen, Y.H. Wang, K.R. Xue, W. Wang, J. Mater. Res. Technol. 18, 1166 (2022) |
[39] | T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, J.J. Jonas, Prog. Mater. Sci. 60, 130 (2014) |
[40] | A. Heidarzadeh, S. Mironov, R. Kaibyshev, G. Cam, A. Simar, A. Gerlich, F. Khodabakhshi, A. Mostafaei, D.P. Field, J.D. Robson, A. Deschamps, P.J. Withers, Prog. Mater. Sci. 117, 100752 (2021) |
[41] | A.M.W. Sarnek, H. Miura, T. Sakai, Mater. Sci. Eng. A 323, 177 (2002) |
[42] | A. Belyakov, H. Miura, T. Sakai, Mater. Sci. Eng. A 255, 139 (1998) |
[43] | B. Schulz, N. Haghdadi, T. Leitner, M. Hafok, S. Primig, J. Alloy. Compd. 936, 168318 (2023) |
[1] | Xue Li, Qingzhen Zhao, Hao Su, Ji Chen, Chuansong Wu. Intermetallic Compounds Formation in Dissimilar Friction Stir Welding of Mg/Cu Alloys [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(9): 1523-1532. |
[2] | Ping Li, Shuangwu Xia, Junfu Dong, Liangwei Dai, Zhicheng Luo, Kemin Xue. Effect of Bimodal Quasicrystal Phase on the Dynamic Recrystallization of Mg-Zn-Gd Alloy during High-Pressure Torsion [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(7): 1128-1134. |
[3] | Peng Chen, Wenhao Chen, Jiaxin Chen, Zhiyu Chen, Yang Tang, Ge Liu, Bensheng Huang, Zhiqing Zhang. Microstructure Evolution and Mechanical Properties of Friction Stir Welded Al-Cu-Li Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(5): 855-871. |
[4] | Hengrui Hu, Jiayu Qin, Yunpeng Zhu, Jinhui Wang, Xiaoqiang Li, Peipeng Jin. Hot Deformation Behavior and Microstructures Evolution of GNP-Reinforced Fine-Grained Mg Composites [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(3): 407-424. |
[5] | H. Ashrafi, M. Shamanian, M. Sanayei, F. Farhadi, J.A. Szpunar. EBSD Characterization of Microstructure and Micro-texture in a Friction Stir-Welded DP600 Steel [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(5): 789-802. |
[6] | Yanyang Wu, Qiaodan Hu, Zongye Ding, Jianguo Li. Effect of Grain Size and Compression Direction on the Hot Deformation Characteristics of High-Cr Ultra-Super-Critical Rotor Steel with Columnar Grains [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(5): 803-813. |
[7] | Xin Zou, Cunli Liu, Muyang Deng, Ji Chen, Lanting Zhang, Ke Chen. Inhibition of Abnormal Grain Growth in Stir Zone via In-Situ Intermetallic Particle Formation During Friction Stir Welding of AA6061 [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(4): 597-610. |
[8] | Peng Liu, Xiaodong Hou, Chaoyun Yang, Yikun Luan, Chengwu Zheng, Dianzhong Li. Synergic Evolution of Microstructure-Texture-Stored Energy in Rare-Earth-Added Interstitial-Free Steels Undergoing Static Recrystallization [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(4): 661-680. |
[9] | Xueli Wang, Xin Ji, Bin He, Dongpo Wang, Chengning Li, Yongchang Liu, Wei Guan, Lei Cui. Prediction of M-A Constituents and Impact Toughness in Stir Zone of X80 Pipeline Steel Friction Stir Welds [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(4): 573-585. |
[10] | Zhenlin Wang, Beibei Wang, Zhen Zhang, Peng Xue, Yunfei Hao, Yanhua Zhao, Dingrui Ni, Guoqing Wang, Zongyi Ma. Enhanced Fatigue Properties of 2219 Al Alloy Joints via Bobbin Tool Friction Stir Welding [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(4): 586-596. |
[11] | Bo Che, Liwei Lu, Longfei Liu, Yan Yang, Wei Kang, Jun Luo, Zhiqiang Wu, Yongfeng Qiu. Hot Compression Mechanical Behavior of Solution Heat-Treated and Pre-aged Mg-Zn-Gd-Er Alloys [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(3): 469-485. |
[12] | H. Zhang, H. L. Hao, G. Y. Fu, B. S. Liu, R. G. Li, R. Z. Wu, H. C. Pan. Microstructure and Mechanical Property of Hot-Rolled Mg-2Ag Alloy Prepared with Multi-pass Rolling [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(2): 335-342. |
[13] | Zhen Jiang, Dongfeng Shi, Jin Zhang, Tianming Li, Liwei Lu. Effect of Zn and Y Additions on Grain Boundary Movement of Mg Binary Alloys During Static Recrystallization [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(2): 179-191. |
[14] | Hongyang Cui, Yi Tan, Rusheng Bai, Lidan Ning, Chuanyong Cui, Xiaogang You, Pengting Li. Recrystallization Behavior of the New Ni-Co-Based Superalloy with Fusion Structure Produced by Electron Beam Smelting Layered Solidification Technology [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(12): 2013-2030. |
[15] | Yu Peng, Shiwei Li, Feng Jin, Yipeng Chen, Wei Guo, Jiangtao Xiong, Jinglong Li. Quasi-in-situ Observation of Interfacial Behaviours: Recrystallization and Grain Recombination during Micro-deformed Diffusion Bonding Process [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(12): 2031-2044. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||