Acta Metallurgica Sinica (English Letters) ›› 2023, Vol. 36 ›› Issue (4): 661-680.DOI: 10.1007/s40195-022-01492-6
Previous Articles Next Articles
Peng Liu1,2, Xiaodong Hou3, Chaoyun Yang1, Yikun Luan1,2(), Chengwu Zheng1,2, Dianzhong Li1,2(
)
Received:
2022-08-11
Revised:
2022-09-30
Accepted:
2022-09-01
Online:
2023-04-10
Published:
2023-03-31
Contact:
Yikun Luan, ykluan@imr.ac.cn; Dianzhong Li, dzli@imr.ac.cn
Peng Liu, Xiaodong Hou, Chaoyun Yang, Yikun Luan, Chengwu Zheng, Dianzhong Li. Synergic Evolution of Microstructure-Texture-Stored Energy in Rare-Earth-Added Interstitial-Free Steels Undergoing Static Recrystallization[J]. Acta Metallurgica Sinica (English Letters), 2023, 36(4): 661-680.
Add to citation manager EndNote|Ris|BibTeX
Steel grades | C | Si | Mn | S | Ti | Nb | RE | Fe |
---|---|---|---|---|---|---|---|---|
Normal-IF steel | 0.0028 | 0.02 | 0.10 | 0.0021 | 0.062 | 0.046 | - | Bal. |
RE-IF steel | 0.0025 | 0.02 | 0.09 | 0.0009 | 0.063 | 0.046 | 0.0025 | Bal. |
Table 1 Chemical composition of the investigated IF steels (in wt%)
Steel grades | C | Si | Mn | S | Ti | Nb | RE | Fe |
---|---|---|---|---|---|---|---|---|
Normal-IF steel | 0.0028 | 0.02 | 0.10 | 0.0021 | 0.062 | 0.046 | - | Bal. |
RE-IF steel | 0.0025 | 0.02 | 0.09 | 0.0009 | 0.063 | 0.046 | 0.0025 | Bal. |
Aspects | Normal-IF steels | RE-IF steels |
---|---|---|
Weighted average,\(\overline{r}\) | 1.93 | 2.23 |
Texture ratio | 27 | 41 |
Annealed grain sizes | 13.65 μm | 16.50 μm |
Hot-rolled grain sizes | 7.43 μm | 10.36 μm |
Table 2 Statistics of $\overline{r}$ values, texture ratio and grain sizes of IF steels subjected to Route 1
Aspects | Normal-IF steels | RE-IF steels |
---|---|---|
Weighted average,\(\overline{r}\) | 1.93 | 2.23 |
Texture ratio | 27 | 41 |
Annealed grain sizes | 13.65 μm | 16.50 μm |
Hot-rolled grain sizes | 7.43 μm | 10.36 μm |
Fig. 2 Pre-annealed microstructures of a the Normal-IF and b the RE-IF steel, c, d correspond to pole figures of these two microstructures, respectively
Fig. 3 Microstructures of a the Normal-IF steel and b the RE-IF steel samples from a1, b1 cold-rolled states to various interrupted annealed states of different holding times: a2, b2 0 s; a3, b3 3 s; a4, b4 10 s; a5, b5 50 s; a6, b6 80 s; a7, b7 90 s; a8, b8 210 s and a9, b9 690 s, wherein the microstructure evolution is divided into two major stages separated by the critical holding time of around 20 s encountering the recrystallization fraction of more than 96%
Fig. 4 Statistics of microstructural fraction and grain size of the investigated steels during static recrystallization: a area percentage of microstructure groups at the nucleation stage, b average grain size of top five largest grains at the nucleation stage, c average grain size of fully recrystallized IF steel samples during grain growth and coarsening stage
Fig. 5 φ2 = 45° ODF sections of a the cold-rolled Normal-IF steel, b the cold-rolled RE-IF steel, c the fully recrystallized Normal-IF steel, d the fully recrystallized RE-IF steel and their corresponding standard φ2 = 45° section with typical orientation fibres and textures of cubic system
Fig. 6 a Volume fraction Δg, b orientation distribution density f(g) of typical textures in the Normal-IF steel and the RE-IF steel, in which the volume fraction is calculated with the tolerance of 15°
Fig. 7 GNDs density of experimental steels at a cold-rolled state and annealed states with different holding times: b 0 s, c 3 s, d 7 s and e 10 s, wherein the local enlarged drawings a1, b1 and e1 correspond to selected areas in a, b and e, respectively
Fig. 8 a, b Simulated ODFs calculated by the VPSC model, c, d experimental ODFs restructured from the EBSD maps of a, c Normal-IF steel and b, d RE-IF steel
Fig. 9 Calculated a relative activities of {110}6<111>2, {112}12<111>1 and {123}24<111>1 slip systems in IF steels undergoing rolling deformation, and the b schematic diagram of orientation relationships among {112}, {110} and {111} slip planes, as well as c thermodynamic calculation of interaction behaviour among steelmaking elements for IF steels before and after RE addition
Fig. 10 GNDs statistics within typical textures of investigated IF steels from a cold-rolled states to annealed states with holding times of b 0 s and c 3 s, respectively, in which the selected area marked with dashed rectangle is locally enlarged in picture d
Fig. 11 Local enlargements of selected areas A-B from Fig. 3a2, b2 and oriented nucleation behaviours of a the Normal-IF steel and b the RE-IF steel, c simultaneous nucleation morphology of the Normal-IF steel but in RD-TD plane. These special regions marked as Ai=1,2,3,4, Bi=1,2,3, and Ci=1,2,3 were traced to typical crystallographic orientations of {111}<uvw>/{554}<225>, {001}<110> and {112}<110> respectively, in which the rod-like subgrains in Ai=4 originated from shear bands composed of several microbands illustrated in d
Fig. 12 Misorientation variation of the shear bands within γ-fibre textures: (L1) shear bands in RD-TD plane of the Normal-IF steel; (L2) shear bands in RD-TD plane of the RE-IF steel, where the selected shear bands were marked by yellow arrows in Fig. 11a, b
Fig. 13 Different nucleation paths of γ-fibre orientation grains from deformed Fe-matrix: a RD-TD midplane, b RD-ND plane of the Normal-IF steel with 7 s holding time
Fig. 14 a, b Volume fraction of γ-fibre orientations within coarse grains, c, d number fraction of grain boundaries within γ-fibre grains, e, f morphology of orientation clusters in a, c, e the Normal-IF steel and b, d, f the RE-IF steel
[1] | S. Ghosh, S. Mula, Mater. Sci. Eng. A 646, 218 (2015) |
[2] | A. Haldar, R.K. Ray, Mater. Sci. Eng. A 391, 402 (2005) |
[3] |
B.J. Duggan, Y.Y. Tse, G. Lam, M.A. Quadir, Mater. Manuf. Process. 26, 51 (2011)
DOI URL |
[4] | S. Ghosh, A.K. Singh, S. Mula, P. Chanda, V.V. Mahashabde, T.K. Roy, Mater. Sci. Eng. A 684, 22 (2017) |
[5] | Y. Nagataki, Y. Hosoya, ISIJ Int. 36, 451 (1996) |
[6] | S. Ghosh, S. Mula, Mater. Charact. 159, 110003 (2020) |
[7] | M. Oyarzábal, A. Martínez-de-Guerenu, I. Gutiérrez, Mater. Sci. Eng. A 485, 200 (2008) |
[8] |
M. Sánchez-Araiza, S. Godet, P.J. Jacques, J.J. Jonas, Acta Mater. 54, 3085 (2006)
DOI URL |
[9] | A. Bodin, J. Sietsman, S. Van Der Zwaag, Metall. Mater. Trans. A 33, 1589 (2002) |
[10] |
H. Chen, Z.B. He, L. Lu, J. Mater. Sci. Technol. 36, 37 (2020)
DOI |
[11] | J. Suharto, Y.G. Ko, Mater. Sci. Eng. A 558, 90 (2012) |
[12] |
R. Saha, R.K. Ray, Scr. Mater. 57, 841 (2007)
DOI URL |
[13] |
L. Zhang, Z. Chen, Y.H. Wang, G.Q. Ma, T.L. Huang, G.L. Wu, D.J. Jensen, Scr. Mater. 141, 111 (2017)
DOI URL |
[14] |
S.L. Xie, Z.B. Wang, K. Lu, J. Mater. Sci. Technol. 35, 460 (2019)
DOI |
[15] |
A. De Paepe, J.C. Herman, P. Hekker, E.F.M. Jansen, Rev. Metall. 97, 905 (2000)
DOI URL |
[16] | P. Juntunen, P. Karjalainen, D. Raabe, G. Bolle, T. Kopio, Metall. Mater. Trans. A 32, 1989 (2001) |
[17] | W.C. Jeong, Metall. Mater. Trans. A 37, 3737 (2006) |
[18] |
P. Ghosh, C. Ghosh, R.K. Ray, Acta Mater. 58, 3842 (2010)
DOI URL |
[19] | C.Y. Yang, P. Liu, Y.K. Luan, D.Z. Li, Y.Y. Li, Int. J.Fatigue 128, 105193 (2019) |
[20] |
H.H. Liu, P.X. Fu, H.W. Liu, Y.F. Cao, C. Sun, N.Y. Du, D.Z. Li, J. Mater. Sci. Technol. 50, 245 (2020)
DOI URL |
[21] |
D.Z. Li, P. Wang, X.Q. Chen, P.X. Fu, Y.K. Luan, X.Q. Hu, H.W. Liu, M.Y. Sun, Y. Chen, Y.F. Cao, L.G. Zheng, J.Z. Gao, Y.T. Zhou, L. Zhang, X.L. Ma, C.L. Dai, C.Y. Yang, Z.H. Jiang, Y. Liu, Y.Y. Li, Nat. Mater. 21, 1137 (2022)
DOI |
[22] | R.X. Yang, X. Cai, L.G. Zheng, X.Q. Hu, D.Z. Li, Acta Metall. Sin-Engl. Lett. (2022). https://doi.org/10.1007/s40195-022-01467-7 |
[23] | J.C. Yang, C.Q. Yang, X.J. Liu, Z. Jian, Forg. Stamp. Technol. 39, 91 (2014) |
[24] | H. Wang, Y.P. Bao, C.Y. Duan, L. Lu, Y. Liu, Q. Zhang,Materials 13, 1473 (2020) |
[25] | M. Mehdi, Y. He, E.J. Hilinski, A. Edrisy, Metall. Mater. Trans. A 50, 3343 (2019) |
[26] | R. Tuttle, Int. J. Metalcast. 6, 51 (2012) |
[27] | E.O. Hall (ed.), The Deformation and Aging of Mild Steel (1951) |
[28] |
M. Mehdi, Y.L. He, E.J. Hilinski, L.A.I. Kestens, A. Edrisy, Steel Res. Int. 90, 1800582 (2019)
DOI URL |
[29] |
J.T. Park, J.A. Szpunar, Acta Mater. 51, 3037 (2003)
DOI URL |
[30] |
D. Dorner, S. Zaefferer, D. Raabe, Acta Mater. 55, 2519 (2007)
DOI URL |
[31] |
H.J. Gao, Y.G. Huang, Scr. Mater. 48, 113 (2003)
DOI URL |
[32] | W. Oliferuk, M. Maj, Eur. J. Mech.A-Solids 28, 266 (2009) |
[33] |
J.F. Nye, Acta Mater. 1, 153 (1953)
DOI URL |
[34] | W. Oliferuk, S.P. Gadaj, M.W. Grabski, Mater. Sci. Eng. A 70, 131 (1985) |
[35] | G.X. Hu, Z. Cai, Y.H. Rong (eds.), Fundamentals of Materials Science, 3rd edn. (Shanghai Jiaotong University Press, Shanghai, 2010), pp. 172-178 |
[36] | W. Oliferuk, M. Maj, Eur. J. Mech.A-Solid 28, 266 (2009) |
[37] | W.M. Mao, P. Yang (ed.), Material Science Pricoples on Electrical Steels, 1st edn. (Higher Education Press, Beijing, 2013), Chapter 3.2 |
[38] | C. Tome, R. Lebensohn (ed.), Material Modeling with the Visco-Plastic Self-Consistent (VPSC) Approach-Theory and Practical Applications, 1st edn. ISBN:9780128207130 (2023) |
[39] |
Y. Rika, T. Ichiro, I. Tsuyoshi, S. Tadashi, ISIJ Int. 34, 70 (1994)
DOI URL |
[40] | S.S. Hazra, A.A. Gazder, E.V. Pereloma, Mater. Sci. Eng. A 524, 158 (2009) |
[41] | B.J. Duggan, M.Z. Quadir, Y.Y. Tse, K. Shen, G.L. Liu, Q.Z. Chen, Mater. Sci. Forum 558, 61 (2007) |
[42] |
M. Mehdi, Y.L. He, E.J. Hilinski, L.A.I. Kestens, A. Edrisy, Acta Mater. 185, 540 (2020)
DOI URL |
[43] |
A. Samet-Meziou, A.L. Etter, T. Baudin, R. Penelle, Scr. Mater. 53, 1001 (2005)
DOI URL |
[44] |
S.H. Choi, Acta Mater. 51, 1775 (2003)
DOI URL |
[45] |
Y.H. Guo, Z.D. Wang, L.Q. Wei, J. Mater. Eng. Perform. 23, 1214 (2014)
DOI URL |
[1] | Chang-Jian Yan, Bo Guan, Yun-Chang Xin, Ling-Yu Zhao, Guang-Jie Huang, Rui Hong, Xiao-Bo Chen, Paul K. Chu. Mechanical and Corrosion Behavior of a Biomedical Mg-6Zn-0.5Zr Alloy Containing a Large Number of Twins [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(3): 439-455. |
[2] | Weiying Huang, Jianhua Chen, Zhen Jiang, Xi Xiong, Wei Qiu, Jian Chen, Xianwei Ren, Liwei Lu. Influence of Ca Content on Microstructure and Mechanical Properties of Extruded Mg-Al-Ca-Mn Alloys [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(3): 426-438. |
[3] | H. Zhang, H. L. Hao, G. Y. Fu, B. S. Liu, R. G. Li, R. Z. Wu, H. C. Pan. Microstructure and Mechanical Property of Hot-Rolled Mg-2Ag Alloy Prepared with Multi-pass Rolling [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(2): 335-342. |
[4] | Xihai Li, Hong Yan, Rongshi Chen. Tailoring the Texture and Mechanical Anisotropy of Multi-cross Rolled Mg-Zn-Gd Alloy by Annealing [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(2): 251-265. |
[5] | Tianjiao Li, Jiang Zheng, Lihong Xia, Haoge Shou, Yongfa Zhang, Rong Shi, Liuyong He, Wenkai Li. Tailoring Texture to Highly Strengthen AZ31 Alloy Plate in the Thickness Direction via Pre-tension and Rolling-Annealing [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(2): 266-280. |
[6] | Zhen Jiang, Dongfeng Shi, Jin Zhang, Tianming Li, Liwei Lu. Effect of Zn and Y Additions on Grain Boundary Movement of Mg Binary Alloys During Static Recrystallization [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(2): 179-191. |
[7] | Yongqiao Li, Lifei Wang, Xiaohuan Pan, Qiang Zhang, Guangsheng Huang, Bin Xing, Weili Cheng, Hongxia Wang, Kwang Seon Shin. Effect of Pre-stretch Strain at High Temperatures on the Formability of AZ31 Magnesium Alloy Sheets [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(1): 48-60. |
[8] | Xicai Luo, Haolin Liu, Limei Kang, Jielin Lin, Datong Zhang, Dongyang Li, Daolun Chen. Achieving Superior Superplasticity in a Mg-6Al-Zn Plate via Multi-pass Submerged Friction Stir Processing [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 757-762. |
[9] | Li Hu, Mingao Li, Qiang Chen, Tao Zhou, Laixin Shi, Mingbo Yang. Dependence of Microstructure Evolution and Mechanical Properties on Loading Direction for AZ31 Magnesium Alloy Sheet with Non-basal Texture During In-Plane Uniaxial Tension [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(2): 223-234. |
[10] | Qinghang Wang, Haowei Zhai, Hongbo Xia, Lintao Liu, Junjie He, Dabiao Xia, Hong Yang, Bin Jiang. Relating Initial Texture to Deformation Behavior During Cold Rolling and Static Recrystallization Upon Subsequent Annealing of an Extruded WE43 Alloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(11): 1793-1811. |
[11] | Shuai Zhang, Bao-Chang Liu, Mei-Xuan Li, Hui-Yuan Wang, Yin-Long Ma. Effect of Microstructures and Textures on Different Surfaces on Corrosion Behavior of an as-Extruded ATZ411 Magnesium Alloy Sheet [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(8): 1029-1041. |
[12] | Bing Li, Ji Wu, Bugang Teng. Influences of the Texture Characteristic and Interdendritic LPSO Phase Distribution on the Tensile Properties of Mg-Gd-Y-Zn-Zr Sheets Through Hot Rolling [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(8): 1051-1064. |
[13] | B. Mehdi, R. Badji, V. Ji, B. Alili, D. Bradai, W. Bedjaoui, F. Deschaux-Beaume, F. Brisset. Unveiling the Residual Stresses, Local Micromechanical Properties and Crystallographic Texture in a Ti-6Al-4V Weld Joint [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(7): 997-1006. |
[14] | Jian Han, Jun Wang, Sunusi Marwana Manladan, Yangchuan Cai, Qian Wang, Zhixiong Zhu, Lisong Zhu, Lianzhong Lu, Zhengyi Jiang. Effect of Lüders Bands by Strain Ageing on Strain Distribution, Microstructure and Texture Evolution of High-Strength Pipe Steel [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(5): 657-667. |
[15] | L. B. Tong, J. H. Chu, D. N. Zou, Q. Sun, S. Kamado, H. G. Brokmeier, M. Y. Zheng. Simultaneously Enhanced Mechanical Properties and Damping Capacities of ZK60 Mg Alloys Processed by Multi-Directional Forging [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 265-277. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||