Acta Metallurgica Sinica (English Letters) ›› 2023, Vol. 36 ›› Issue (12): 2013-2030.DOI: 10.1007/s40195-023-01608-6
Previous Articles Next Articles
					
													Hongyang Cui1,2, Yi Tan1,2, Rusheng Bai1,2, Lidan Ning1,2, Chuanyong Cui3, Xiaogang You4, Pengting Li1,2( )
)
												  
						
						
						
					
				
Received:2023-04-18
															
							
																	Revised:2023-08-22
															
							
																	Accepted:2023-08-23
															
							
																	Online:2023-10-30
															
							
																	Published:2023-10-30
															
						Contact:
								Pengting Li   
													Hongyang Cui, Yi Tan, Rusheng Bai, Lidan Ning, Chuanyong Cui, Xiaogang You, Pengting Li. Recrystallization Behavior of the New Ni-Co-Based Superalloy with Fusion Structure Produced by Electron Beam Smelting Layered Solidification Technology[J]. Acta Metallurgica Sinica (English Letters), 2023, 36(12): 2013-2030.
Add to citation manager EndNote|Ris|BibTeX
| Co | Cr | W | Mo | Al + Ti | C + Zr + B | Ni | 
|---|---|---|---|---|---|---|
| 20-26 | 13-15 | 1.1-1.3 | 2.4-2.8 | 7.72-8.40 | 0.04-0.11 | Bal. | 
Table 1 Main composition of Ni-Co-based superalloy (wt%)
| Co | Cr | W | Mo | Al + Ti | C + Zr + B | Ni | 
|---|---|---|---|---|---|---|
| 20-26 | 13-15 | 1.1-1.3 | 2.4-2.8 | 7.72-8.40 | 0.04-0.11 | Bal. | 
 
																													Fig. 1 Microstructures of the new Ni-Co-based superalloy: a-a3 cast microstructures of EBSL-Ni-Co-based superalloy; b-b3 homogenized state microstructures of EBSL-Ni-Co-based superalloy; c-c3 homogenized state microstructures of DM-Ni-Co-based superalloy, d DSC curves of the EBSL-Ni-Co superalloy, d1 microstructure of the alloy solution treatment at 1120 °C for 10 min, d2 microstructure of the alloy solution treatment at 1160 °C for 10 min
 
																													Fig. 2 a Sampling requirements diagram; b schematic diagram of hot compression process schematic diagram; c the directions of sampling and characterization for EBSD and TEM tests
 
																													Fig. 3 Microstructures of the alloy after heat treatment at 1150 °C for 4 h: a EBSL-Ni-Co superalloy, b DM-Ni-Co superalloy, c grain size distribution map, d misorientation angle distribution map
 
																													Fig. 4 Corrected true stress-strain curves of the new Ni-Co superalloy under the hot deformed: a 1120 °C of EBSL-Ni-Co superalloy, b 1160 °C of EBSL-Ni-Co superalloy, c various microstructure, d schematic representations of the flow stress curve
 
																													Fig. 5 Microstructural characteristics of the new Ni-Co-based superalloy deformed at γ′ super-solvus temperature (1160 °C) to a strain rate of 0.01 s−1 with different strains: a-d DM-Ni-Co superalloy, e-h EBSL-Ni-Co superalloy
 
																													Fig. 6 Microstructural characteristics of the EBSL-Ni-Co superalloy deformed at γ′ sub-/super-solvus temperatures to a strain of 0.7 with different strain rates: a-d γ′ sub -solvus temperatures (1120 °C), e-h γ′ super-solvus temperatures (1160 °C)
 
																													Fig. 7 a DRX grain volume fraction of different microstructures, b evolution of dislocation density inside a recrystallized grain during the DRX process, c the kernel average misorientation map for different deformation strains
 
																													Fig. 8 Distributions of the EBSL-Ni-Co superalloy deformed at γ′ sub-/super-solvus temperature to a strain of 0.7 with different strain rates: a volume fraction of DRX grain, b volume fraction of LAGBs, MAGBs and HAGBs
 
																													Fig. 9 a DRX grain size distributions of the EBSL-Ni-Co superalloy deformed at γ′ sub-/super-solvus temperature to a strain of 0.7 with different strain rates, b schematic diagram of the interaction between a moving grain boundary and the dispersed γ′ phase, c, d microstructures at a strain rate of 0.01 s−1, e, f microstructures at a strain rate of 0.001 s−1
 
																													Fig. 10 Schematic diagram of the microstructure evolution deformed though DDRX: a IPF of regions G1 and the line graph, b misorientation angle along the arrow, c schematic diagram of microstructure deformed under EBSL-Ni-Co superalloy, d, e TEM morphologies of the EBSL-Ni-Co superalloy
 
																													Fig. 11 Schematic diagram of the microstructure evolution deformed though CDRX: a IPF of regions G2, b the line graph and misorientation angle along the arrow, c microstructure deformed under EBSL-Ni-Co superalloy, d, e TEM morphology of the EBSL-Ni-Co superalloy
 
																													Fig. 12 Schematic diagram of the microstructure evolution for the formation of TDRX: a, b IPF with strain 0.3, c microstructure deformed under EBSL-Ni-Co superalloy, d, e TEM morphology of the EBSL- Ni-Co superalloy
 
																													Fig. 13 Schematic diagram of the microstructure evolution deformed though PSN: a, b TEM morphologies of the EBSL-Ni-Co superalloy, c microstructure deformed under EBSL-Ni-Co-based superalloy
 
																													Fig. 14 Schematic illustration of grain refinement evolution and corresponding mechanisms during hot compression deformation: a γ′ sub-solvus temperature (1120 °C), b γ′ super-solvus temperature (1160 °C)
| 1. | C.Y. Cui, Y.F. Gu, H. Harada, D.H. Ping, A. Sato,  Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 37, 3183 (2006) DOI URL | 
| 2. | E.X. Pu, W.J. Zheng, Z.G. Song, H. Feng, H. Dong, Acta Metall. Sin. -Engl Lett. 30, 1119 (2017) | 
| 3. | H. Cui, Y. Tan, R. Bai, Y. Li, X. Zhuang, Z. Chen, X. You, P. Li, C. Cui, Mater. Charact. 184, 111668 (2022) DOI URL | 
| 4. | H. Cui, Y. Tan, R. Bai, L. Ning, X. You, C. Cui, P. Li, J. Alloys Compd. 934, 167880 (2023) DOI URL | 
| 5. | X. You, Y. Tan, M. Takeyama, P. Li, Y. Li, H. Zhang, H. Cui, C. Cui, Y. Wang, J. Li, Z. Zhang, G. Dong, W. Xiao, J. Mater. Sci. Technol. 143, 216 (2023) DOI URL | 
| 6. | F. Liu, J. Chen, J. Dong, M. Zhang, Z. Yao, Mater. Sci. Eng. A 651, 102 (2016) DOI URL | 
| 7. | Y.T. Wang, J.B. Li, Y.C. Xin, X.H. Chen, M. Rashad, B. Liu, Y. Liu, Acta Metall. Sin. -Engl. Lett. 32, 932 (2019) | 
| 8. | G. Zhao, X. Zang, Y. Jing, N. Lü, J. Wu, Mater. Sci. Eng. A 815, 141293 (2021) DOI URL | 
| 9. | M. Higashi, N. Kanno,  Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 52, 181 (2021) DOI | 
| 10. | Z. Zhou, R. Zhang, C. Cui, Y. Zhou, X. Sun, Mater. Sci. Eng. A 833, 142370 (2022) DOI URL | 
| 11. | L. Zhao, Y. Tan, S. Shi, X. You, P. Li, C. Cui, J. Alloys Compd. 833, 155019 (2020) DOI URL | 
| 12. | S. Dourandish, M. Jahazi, G.R. Ebrahimi, L. Ebacher, J. Mater. Res. Technol. 13, 260 (2021) DOI URL | 
| 13. | L. Zhang, W. Wang, M. Babar Shahzad, Y.Y. Shan, K. Yang, Acta Metall. Sin. -Engl. Lett. 32, 1161 (2019) | 
| 14. | Y. Zhu, Y. Cao, R. Luo, C. Liu, H. Di, G. Shu, G. Huang, Q. Liu, Acta Metall. Sin. -Engl. Lett. 34, 1296 (2021) | 
| 15. | Y.P. Li, R.B. Song, E.D. Wen, F.Q. Yang, Acta Metall. Sin. -Engl. Lett. 29, 441 (2016) | 
| 16. | W.H. Qi, B.Y. Huang, M.P. Wang, Z. Li, Z.M. Yu, Phys. Lett. Sect. A Gen. At. Solid State Phys. 370, 494 (2007) | 
| 17. | B. Aashranth, M. Arvinth Davinci, D. Samantaray, U. Borah, S.K. Albert, Mater. Des. 116, 495 (2017) DOI URL | 
| 18. | D.G. Cram, H.S. Zurob, Y.J.M. Brechet, C.R. Hutchinson, Acta Mater. 57, 5218 (2009) DOI URL | 
| 19. | J. Hidalgo, M.J. Santofimia,  Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 47, 5288 (2016) DOI URL | 
| 20. | O. Beltran, K. Huang, R.E. Logé, Comput. Mater. Sci. 102, 293 (2015) DOI URL | 
| 21. | Y. Wu, Q. Hu, Z. Ding, J. Li, Acta Metall. Sin. -Engl. Lett. 36, 803 (2023) | 
| 22. | C. Liu, J. Zhang, Y. Yang, X. Xia, T. He, J. Ding, Y. Tang, Z. Zhang, X. Chen, Y. Liu, Acta Metall. Sin. -Engl. Lett. 35, 1383 (2022) | 
| 23. | J. Humphreys, G.S. Rohrer, A. Rollett, The Structure and Energy of Grain Boundaries, (Elsevier, Amsterdam 2017) | 
| 24. | S. Huang, L. Wang, X. Lian, B. Zhang, G. Zhao, Acta Metall. Sin. -Engl. Lett. 27, 198 (2014) | 
| 25. | J. Xun, G. Lin, H. Liu, S. Zhao, J. Chen, X. Dai, R. Zhang, Acta Metall. Sin. -Engl. Lett. 33, 215 (2020) | 
| 26. | A. Harte, M. Atkinson, A. Smith, C. Drouven, S. Zaefferer, J. Quinta da Fonseca, M. Preuss, Acta Mater. 194, 257 (2020) DOI URL | 
| 27. | F.J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena, (Elsevier, Amsterdam 2012). | 
| 28. | T.R. Afanasyev, Recrystallization in Metals and Alloys (1981). | 
| 29. | X. Tang, B. Wang, H. Ji, X. Fu, W. Xiao, Mater. Sci. Eng. A 675, 192 (2016) DOI URL | 
| 30. | P. Liu, R. Zhang, Y. Yuan, C. Cui, F. Liang, X. Liu, Y. Gu, Y. Zhou, X. Sun, J. Mater. Sci. Technol. 77, 66 (2021) DOI URL | 
| 31. | M. Soucail, M. Marty, H. Octor, Superalloys (1996). | 
| 32. | J.W. Martin, Encyclopedia of Materials: Science and Technology(Elsevier, Amsterdam, 2001), p.3634 | 
| 33. | D. Zöllner, Ref. Modul. Mater. Sci. Mater. Eng. 30, 025010 (2016) | 
| 34. | V. Yadav, N. Moelans, Y. Zhang, D. Juul Jensen, Acta Mater. 221, 117377 (2021) DOI URL | 
| 35. | T. Sakai, Y. Nagao, M. Ohashi, J.J. Jonas, Mater. Sci. Technol. (United Kingdom) 2, 659 (1986) | 
| 36. | T. Sakai, M. Ohashi, Mater. Sci. Technol. (United Kingdom) 6, 1251 (1990) | 
| 37. | J. Humphreys, G.S. Rohrer, A. Rollett, Mobility and Migration of Boundaries, (Elsevier, Amsterdam 2017) | 
| 38. | B. Xie, H. Yu, T. Sheng, Y. Xiong, Y. Ning, M.W. Fu, J. Alloys Compd. 803, 16 (2019) DOI URL | 
| 39. | S. Wang, L. Wang, Y. Liu, G. Xu, B. Zhang, G. Zhao, Acta Metall. Sin. -Engl. Lett. 24, 295 (2011) | 
| 40. | H.H. Lu, Y. Li, L. Lu, W.G. Zhang, W. Liang, Acta Metall. Sin. Engl. Lett. 35, 1983 (2022) | 
| 41. | V. Randle, Acta Mater. 52, 4067 (2004) DOI URL | 
| 42. | H. Zhang, K. Zhang, H. Zhou, Z. Lu, C. Zhao, X. Yang, Mater. Des. 80, 51 (2015) DOI URL | 
| 43. | L. Sun, Z. Xu, L. Peng, X. Lai, Scr. Mater. 219, 114877 (2022) DOI URL | 
| 44. | J. Humphreys, G.S. Rohrer, A. Rollett, Recrystallization and Related Annealing Phenomena(Elsevier, Amsterdam, 2017), p.305 | 
| [1] | Yanyang Wu, Qiaodan Hu, Zongye Ding, Jianguo Li. Effect of Grain Size and Compression Direction on the Hot Deformation Characteristics of High-Cr Ultra-Super-Critical Rotor Steel with Columnar Grains [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(5): 803-813. | 
| [2] | Bo Che, Liwei Lu, Longfei Liu, Yan Yang, Wei Kang, Jun Luo, Zhiqiang Wu, Yongfeng Qiu. Hot Compression Mechanical Behavior of Solution Heat-Treated and Pre-aged Mg-Zn-Gd-Er Alloys [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(3): 469-485. | 
| [3] | H. Zhang, H. L. Hao, G. Y. Fu, B. S. Liu, R. G. Li, R. Z. Wu, H. C. Pan. Microstructure and Mechanical Property of Hot-Rolled Mg-2Ag Alloy Prepared with Multi-pass Rolling [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(2): 335-342. | 
| [4] | Yu Peng, Shiwei Li, Feng Jin, Yipeng Chen, Wei Guo, Jiangtao Xiong, Jinglong Li. Quasi-in-situ Observation of Interfacial Behaviours: Recrystallization and Grain Recombination during Micro-deformed Diffusion Bonding Process [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(12): 2031-2044. | 
| [5] | Zhendan Yang, Xiao Zhang, Chenhao Sang, Pei Wang, Dianzhong Li. Effects of Hot Deformation on the Evolution of Microstructure in Pearlitic Steel Wire Rod [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(12): 2058-2068. | 
| [6] | Nan Bian, Feng Li, Wentao Niu, Chao Li, Yuanqi Li. Dual Strengthened Control of Recrystallization Behavior on CVCDE Magnesium Alloy Containing Characteristic Structure [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(11): 1805-1821. | 
| [7] | Sihan Chen, Tian Liang, Guangcai Ma, Chengwu Zheng, Deli Chen, Yingche Ma, Kui Liu. High-Temperature Plasticity Enhanced by Multiple Secondary Phases in a High-Si Austenitic Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(9): 1519-1530. | 
| [8] | Fei Qiang, Wen Wang, Ke Qiao, Pai Peng, Ting Zhang, Xiao-Hu Guan, Jun Cai, Qiang Meng, Hua-Xia Zhao, Kuai-She Wang. Microstructure and Mechanical Properties in Friction Stir Welded Thick Al-Zn-Mg-Cu Alloy Plate [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1329-1342. | 
| [9] | Chang Liu, Jianbo Zhang, Yikai Yang, Xingchuan Xia, Tian He, Jian Ding, Ying Tang, Zan Zhang, Xueguang Chen, Yongchang Liu. Hot Deformation Behavior of ATI 718Plus Alloy with Different Microstructures [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1383-1396. | 
| [10] | Ming-Jie Zhao, Liang Huang, Chang-Min Li, Jia-Hui Xu, Xu-Yang Li, Jian-Jun Li, Peng-Chuan Li, Chao-Yuan Sun. Investigation and Modeling of Austenite Grain Evolution for a Typical High-strength Low-alloy Steel during Soaking and Deformation Process [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(6): 996-1010. | 
| [11] | H. R. Rezaei Ashtiani, A. A. Shayanpoor. Effect of Initial Grain Size on the Hot Deformation Behavior and Microstructural Evolution of Pure Copper [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(4): 662-678. | 
| [12] | Taiqian Mo, Huaqiang Xiao, Bo Lin, Wei Li, Kai Ma. Improving Ductility and Anisotropy by Dynamic Recrystallization in Ti/Mg Laminated Metal Composite [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(12): 1946-1958. | 
| [13] | Hui-Hu Lu, You Li, Li Lu, Wang-Gang Zhang, Wei Liang. Tailoring the Texture and Mechanical Properties of Textured-AZ31 Mg Alloy Sheets by Twinning and Recrystallization [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(12): 1983-1995. | 
| [14] | Yunpeng Meng, Boyu Lin, Lifei Wang, Jianfeng Fan, Shangzhou Zhang, Liwei Lu, Hans Jørgen Roven, Hua Zhang. Effect of Extrusion Combination Types on Microstructure and Mechanical Properties of the AZ31/GW103K Bimetallic Composite Plates [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(12): 1959-1972. | 
| [15] | Shaofan Ge, Shifeng Lin, Huameng Fu, Long Zhang, Tieqiang Geng, Zhengwang Zhu, Zhengkun Li, Hong Li, Aimin Wang, Hongwei Zhang, Haifeng Zhang. High-temperature Mechanical Properties and Dynamic Recrystallization Mechanism of in situ Silicide-reinforced MoNbTaTiVSi Refractory High-entropy Alloy Composite [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(10): 1617-1630. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||
 WeChat
			   WeChat
			