Acta Metallurgica Sinica (English Letters) ›› 2023, Vol. 36 ›› Issue (4): 597-610.DOI: 10.1007/s40195-022-01479-3
Previous Articles Next Articles
Xin Zou1,2, Cunli Liu1, Muyang Deng1, Ji Chen3, Lanting Zhang1, Ke Chen1,2()
Received:
2022-06-19
Revised:
2022-09-22
Accepted:
2022-07-30
Online:
2023-04-10
Published:
2023-03-31
Contact:
Ke Chen, chenke83@sjtu.edu.cn
Xin Zou, Cunli Liu, Muyang Deng, Ji Chen, Lanting Zhang, Ke Chen. Inhibition of Abnormal Grain Growth in Stir Zone via In-Situ Intermetallic Particle Formation During Friction Stir Welding of AA6061[J]. Acta Metallurgica Sinica (English Letters), 2023, 36(4): 597-610.
Add to citation manager EndNote|Ris|BibTeX
Al | Cu | Fe | Mg | Mn | Si | Cr |
---|---|---|---|---|---|---|
Bal. | 0.25 | 0.49 | 0.97 | 0.10 | 0.70 | 0.15 |
Table 1 Chemical composition of AA6061 (wt%)
Al | Cu | Fe | Mg | Mn | Si | Cr |
---|---|---|---|---|---|---|
Bal. | 0.25 | 0.49 | 0.97 | 0.10 | 0.70 | 0.15 |
Fig. 1 a Schematic demonstration of FSW with an internal tunnel (shadowed quarter circle) for holding Al-Ti powder mixture, b the welding tool used in the current study with dimensions shown
Al-Ti powder addition | State | Number of passes | |||
---|---|---|---|---|---|
1 | 2 | 4 | 5 | ||
No | As-welded | NP1 | NP2 | NP4 | - |
After HT | NP1-HT | NP2-HT | NP4-HT | - | |
Yes | As-welded | P1 | P2 | P4 | P5 |
After HT | P1-HT | P2-HT | P4-HT | P5-HT |
Table 2 Experimental design and sample designations
Al-Ti powder addition | State | Number of passes | |||
---|---|---|---|---|---|
1 | 2 | 4 | 5 | ||
No | As-welded | NP1 | NP2 | NP4 | - |
After HT | NP1-HT | NP2-HT | NP4-HT | - | |
Yes | As-welded | P1 | P2 | P4 | P5 |
After HT | P1-HT | P2-HT | P4-HT | P5-HT |
Fig. 3 Cross sections of the welds without Al-Ti powder mixture: a 2-pass as-welded (NP2), b 1-pass after HT (NP1-HT), c 2-pass after HT (NP2-HT), d 4-pass after HT (NP4-HT); e-g magnified local areas indicated in a showing grain structures from top to bottom; h-j magnified local areas indicated in c showing grain structures from top to bottom
Fig. 4 Cross sections of welds produced with Al-Ti powder mixture addition after HT: a 1-pass (P1-HT), b 2-pass (P2-HT), c 4-pass (P4-HT); d-f microstructure of local areas boxed in a-c; g-i microstructure of local areas similar to d-f at higher magnification
No | Al (at%) | O (at%) | Ti (at%) | Suggested phase |
---|---|---|---|---|
1 | 38.9 | 61.1 | - | Oxide |
2 | 77.2 | 22.8 | - | Oxide |
3 | 100 | - | - | Al |
4 | - | - | 100 | Ti |
5 | 75.8 | - | 24.2 | Al3Ti |
6 | 75.9 | - | 24.1 | Al3Ti |
7 | 72.1 | - | 27.9 | Al3Ti |
8 | 72.9 | - | 27.1 | Al3Ti |
Table 3 EDS point analyses of the locations indicated in Figs. 4 and 6
No | Al (at%) | O (at%) | Ti (at%) | Suggested phase |
---|---|---|---|---|
1 | 38.9 | 61.1 | - | Oxide |
2 | 77.2 | 22.8 | - | Oxide |
3 | 100 | - | - | Al |
4 | - | - | 100 | Ti |
5 | 75.8 | - | 24.2 | Al3Ti |
6 | 75.9 | - | 24.1 | Al3Ti |
7 | 72.1 | - | 27.9 | Al3Ti |
8 | 72.9 | - | 27.1 | Al3Ti |
Fig. 5 Magnified views via SEM in BSE mode showing the sharp difference in SPP dispersion between a AGG region of Location 1 marked in Fig. 3d in NP4-HT sample, b non-AGG region of Location 2 marked in Fig. 4c in P4-HT sample
Fig. 6 a Macroscopic view of AGG-free cross section of 5-pass weld with Al-Ti powder mixture addition after HT (P5-HT); refined grain structures in the upper part for b the left, c the middle, and d the right regions, marked I, II, and III, respectively, in a; e and f the typically transformed particles in the residual-rich area, enclosed by the white dashed line in a; g loose and dispersed cluster of Al3Ti in the center of the stir zone, marked IV in a
Fig. 8 a and b Processed SEM images from Fig. 5a and b, showing the dispersions of SPPs with oxides colored red and the others white in NP4-HT and P4-HT, respectively; c SPP size distributions quantified using Image-Pro Plus from a and b (Note: Considering the resolution limit of SEM, particles with a radius between 0 and 20 nm were all categorized into the dp = 20 nm group.)
Parameter | NP4 | P4 | P5 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
L | C | R | L | C | R | RA | L | C | R | |
0.103 ± 0.002 | 0.103 ± 0.003 | 0.101 ± 0.001 | 0.124 ± 0.003 | 0.137 ± 0.002 | 0.126 ± 0.003 | 0.110 ± 0.004 | 0.119 ± 0.002 | 0.126 ± 0.002 | 0.137 ± 0.004 | |
FV (%) | 0.325 ± 0.019 | 0.333 ± 0.015 | 0.280 ± 0.028 | 1.263 ± 0.039 | 1.550 ± 0.094 | 1.266 ± 0.037 | 0.410 ± 0.048 | 1.346 ± 0.075 | 1.516 ± 0.039 | 1.938 ± 0.163 |
Ravg (μm) | 6.71 ± 0.23 | 6.96 ± 0.17 | 6.65 ± 0.35 | 7.47 ± 0.29 | 7.22 ± 0.37 | 6.63 ± 0.18 | 6.47 ± 0.11 | 6.57 ± 0.36 | 6.96 ± 0.14 | 6.75 ± 0.36 |
Z | 0.633 | 0.678 | 0.550 | 2.286 | 2.454 | 2.006 | 0.726 | 2.226 | 2.508 | 2.865 |
Table 4 Average diameters and volume fractions of SPPs, average grain radius in the pre-HT state, and computed particle pinning parameters for various locations of NP4, P4, and P5 samples
Parameter | NP4 | P4 | P5 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
L | C | R | L | C | R | RA | L | C | R | |
0.103 ± 0.002 | 0.103 ± 0.003 | 0.101 ± 0.001 | 0.124 ± 0.003 | 0.137 ± 0.002 | 0.126 ± 0.003 | 0.110 ± 0.004 | 0.119 ± 0.002 | 0.126 ± 0.002 | 0.137 ± 0.004 | |
FV (%) | 0.325 ± 0.019 | 0.333 ± 0.015 | 0.280 ± 0.028 | 1.263 ± 0.039 | 1.550 ± 0.094 | 1.266 ± 0.037 | 0.410 ± 0.048 | 1.346 ± 0.075 | 1.516 ± 0.039 | 1.938 ± 0.163 |
Ravg (μm) | 6.71 ± 0.23 | 6.96 ± 0.17 | 6.65 ± 0.35 | 7.47 ± 0.29 | 7.22 ± 0.37 | 6.63 ± 0.18 | 6.47 ± 0.11 | 6.57 ± 0.36 | 6.96 ± 0.14 | 6.75 ± 0.36 |
Z | 0.633 | 0.678 | 0.550 | 2.286 | 2.454 | 2.006 | 0.726 | 2.226 | 2.508 | 2.865 |
[1] | Z.Y. Ma, Acta Metall. Sin. -Engl. Lett. 33, 1 (2020) |
[2] | H. Su, C.S. Wu, Acta Metall. Sin. -Engl. Lett. 34, 1065 (2021) |
[3] |
X.C. Meng, Y.X. Huang, J. Cao, J.J. Shen, J.F. dos Santos, Prog. Mater. Sci. 115, 100706 (2021)
DOI URL |
[4] |
A. Heidarzadeh, S. Mironov, R. Kaibyshev, G. Çam, A. Simar, A. Gerlich, F. Khodabakhshi, A. Mostafaei, D.P. Field, J.D. Robson, A. Deschamps, P.J. Withers, Prog. Mater. Sci. 117, 100752 (2021)
DOI URL |
[5] |
Y.M. Xie, X.C. Meng, Y.X. Chang, D.X. Mao, Z.W. Qin, L. Wan, Y.X. Huang, Adv. Sci. 9, 2104464 (2022)
DOI URL |
[6] |
Y.S. Sato, H. Watanabe, H. Kokawa, Sci. Technol. Weld. Join. 12, 318 (2007)
DOI URL |
[7] | Y.S. Sato, H. Kokawa, Metall. Mater. Trans. A 32, 3023 (2001) |
[8] | F.C. Liu, B.L. Xiao, K. Wang, Z.Y. Ma, Mater. Sci. Eng. A 527, 4191 (2010) |
[9] |
Y.C. Chen, J.C. Feng, H.J. Liu, Mater. Charact. 58, 174 (2007)
DOI URL |
[10] |
I. Charit, R.S. Mishra, Scr. Mater. 58, 367 (2008)
DOI URL |
[11] |
S. Mironov, K. Masaki, Y.S. Sato, H. Kokawa, Scr. Mater. 67, 983 (2012)
DOI URL |
[12] | A.H. Baghdadi, Z. Sajuri, A. Keshtgar, N.M. Sharif, A. Rajabi, Materials 15, 288 (2021) |
[13] | I. Vysotskiy, S. Malopheyev, S. Mironov, R. Kaibyshev, Mater. Sci. Eng. A 733, 39 (2018) |
[14] | A. Kalinenko, I. Vysotskii, S. Malopheyev, S. Mironov, R. Kaibyshev, Mater. Sci. Eng. A 817, 141409 (2021) |
[15] |
A. Kalinenko, I. Vysotskiy, S. Malopheyev, S. Mironov, R. Kaibyshev, Mater. Lett. 302, 130407 (2021)
DOI URL |
[16] |
J. Ciulik, E.M. Talef, Scr. Mater. 61, 895 (2009)
DOI URL |
[17] | K. Chen, W. Gan, K. Okamoto, K. Chung, R.H. Wagoner, Metall. Mater. Trans. A 42, 488 (2011) |
[18] | Y.F. Sun, H. Fujii, Mater. Sci. Eng. A 694, 81 (2017) |
[19] |
Z.L. Hu, X.S. Wang, Q. Pang, F. Huang, X.P. Qin, L. Hua, Mater. Charact. 99, 180 (2015)
DOI URL |
[20] |
K.V. Jata, S.L. Semiatin, Scr. Mater. 43, 743 (2000)
DOI URL |
[21] | I. Charit, R.S. Mishra, Mater. Sci. Eng. A 359, 290 (2003) |
[22] | S. Jana, R.S. Mishra, J.A. Baumann, G. Grant, Mater. Sci. Eng. A 528, 189 (2010) |
[23] | M.M. Attallah, H.G. Salem, Mater. Sci. Eng. A 391, 51 (2005) |
[24] | K.A.A. Hassan, A.F. Norman, D.A. Price, P.B. Prangnell, Acta Mater. 51, 1923 (2003) |
[25] |
F.J. Humphreys, Acta Mater. 45, 5031 (1997)
DOI URL |
[26] | M.B. Lezaack, A. Simar, Mater. Sci. Eng. A 807, 140901 (2021) |
[27] | I. Vysotskiy, S. Malopheyev, S. Mironov, R. Kaibyshev, Mater. Sci. Eng. A 760, 206 (2019) |
[28] | A. Kalinenko, I. Vysotskiy, S. Malopheyev, M. Gazizov, S. Mironov, R. Kaibyshev, Mater. Sci. Eng. A 832, 142388 (2022) |
[29] |
I.S. Zuiko, S. Mironov, S. Betsofen, R. Kaibyshev, Scr. Mater. 196, 113765 (2021)
DOI URL |
[30] | G.Q. Huang, J. Wu, W.T. Hou, Y.F. Shen, Mater. Sci. Eng. A 734, 353 (2018) |
[31] | R. Kesharwani, K.K. Jha, C. Sarkar, M. Imam, Mater. Today: Proc. 56, 826 (2022) |
[32] | V.P. Mahesh, A. Arora, Metall. Mater. Trans. A 50, 5373 (2019) |
[33] | M. Bahrami, N. Helmi, K. Dehghani, M.K.B. Givi, Mater. Sci. Eng. A 595, 173 (2014) |
[34] |
K.N. Krishnan, J. Mater. Sci. 37, 473 (2002)
DOI URL |
[35] |
Y.Q. Mao, L.M. Ke, Y.H. Chen, F.C. Liu, L. Xing, J. Mater. Sci. Technol. 34, 228 (2018)
DOI URL |
[36] |
M.A. Safarkhanian, M. Goodarzi, S.M.A. Boutorabi, J. Mater. Sci. 44, 5452 (2009)
DOI URL |
[37] |
Y. Birol, Mater. Sci. Technol. 29, 1283 (2013)
DOI URL |
[38] | F.J. Humphreys, M.Hatherly, in Recrystallization and related annealing phenomena, Chapt 9, (Elsevier Science Inc, Tarrytown, New York, 1995) p. 281 |
[39] | F.J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd edn. (Elsevier, Oxford, 2004) |
[40] |
Q. Zhang, B.L. Xiao, W.G. Wang, Z.Y. Ma, Acta Mater. 60, 7090 (2012)
DOI URL |
[41] | G. Biallas, R. Braun, D.C. Dalle, G. Staniek, W.A. Kaysser,Mechanical properties and corrosion behaviour of friction stir welded Al2024-T3. In: Paper presented at the First International Conference on Friction Stir Welds, Thousand Oaks, CA, 1999. |
[1] | Xueli Wang, Xin Ji, Bin He, Dongpo Wang, Chengning Li, Yongchang Liu, Wei Guan, Lei Cui. Prediction of M-A Constituents and Impact Toughness in Stir Zone of X80 Pipeline Steel Friction Stir Welds [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(4): 573-585. |
[2] | Zhenlin Wang, Beibei Wang, Zhen Zhang, Peng Xue, Yunfei Hao, Yanhua Zhao, Dingrui Ni, Guoqing Wang, Zongyi Ma. Enhanced Fatigue Properties of 2219 Al Alloy Joints via Bobbin Tool Friction Stir Welding [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(4): 586-596. |
[3] | Xiangchen Meng, Yuming Xie, Xiaotian Ma, Mingyang Liang, Xiaoyang Peng, Shiwei Han, Lei Kan, Xin Wang, Sihao Chen, Yongxian Huang. Towards Friction Stir Remanufacturing of High-Strength Aluminum Components [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(1): 91-102. |
[4] | Fei Qiang, Wen Wang, Ke Qiao, Pai Peng, Ting Zhang, Xiao-Hu Guan, Jun Cai, Qiang Meng, Hua-Xia Zhao, Kuai-She Wang. Microstructure and Mechanical Properties in Friction Stir Welded Thick Al-Zn-Mg-Cu Alloy Plate [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1329-1342. |
[5] | Pengcheng Zhu, Lin Zhang, Zhaochang Li, K. H. Lo, Jianfeng Wang, Yufeng Sun, Shaokang Guan. Microstructure and Mechanical Properties of Friction Stir Welded 1.5 GPa Martensitic High-Strength Steel Plates [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1079-1089. |
[6] | Junlei Zhang, Han Liu, Xiang Chen, Qin Zou, Guangsheng Huang, Bin Jiang, Aitao Tang, Fusheng Pan. Deformation Characterization, Twinning Behavior and Mechanical Properties of Dissimilar Friction-Stir-Welded AM60/AZ31 Alloys Joint During the Three-Point Bending [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 727-744. |
[7] | Peng Gong, Ying-Ying Zuo, Shu-De Ji, De-Jun Yan, Deng-Chang Li, Zhen Shang. Non-keyhole Friction Stir Welding for 6061-T6 Aluminum Alloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 763-772. |
[8] | Yu-Qing Mao, Ping Yang, Li-Ming Ke, Yang Xu, Yu-Hua Chen. Microstructure Evolution and Recrystallization Behavior of Friction Stir Welded Thick Al-Mg-Zn-Cu alloys: Influence of Pin Centerline Deviation [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 745-756. |
[9] | J.X. Tang, L. Shi, C.S. Wu, M.X. Wu, S. Gao. Microstructure and Mechanical Properties of Dissimilar Double-Side Friction Stir Welds Between Medium-Thick 6061-T6 Aluminum and Pure Copper Plates [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(12): 2027-2046. |
[10] | Hao Su, Chuansong Wu. Numerical Simulation for the Optimization of Polygonal Pin Profiles in Friction Stir Welding of Aluminum [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(8): 1065-1078. |
[11] | Chunliang Yang, Chuansong Wu, Junjie Zhao. Numerical Prediction of Intermetallic Compounds Thickness in Friction Stir Welding of Dissimilar Aluminum/Magnesium Alloys [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(10): 1375-1385. |
[12] | Quan Wen, Wenya Li, Vivek Patel, Luciano Bergmann, Benjamin Klusemann, Jorge F. dos Santos. Assessing the Bonding Interface Characteristics and Mechanical Properties of Bobbin Tool Friction Stir Welded Dissimilar Aluminum Alloy Joints [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 125-134. |
[13] | Tianbo Zhao, Yutaka S. Sato, Hiroyuki Kokawa, Kazuhiro Ito. Predicting Tensile Properties of Friction-Stir-Welded 6063 Aluminum with Experimentally Measured Welding Heat Input [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1235-1242. |
[14] | Xiaochao Liu, Yufeng Sun, Tomoya Nagira, Kohsaku Ushioda, Hidetoshi Fujii. Effect of Stacking Fault Energy on the Grain Structure Evolution of FCC Metals During Friction Stir Welding [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 1001-1012. |
[15] | Nan Xu, Ruo-Nan Feng, Wen-Feng Guo, Qi-Ning Song, Ye-Feng Bao. Effect of Zener-Hollomon Parameter on Microstructure and Mechanical Properties of Copper Subjected to Friction Stir Welding [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(2): 319-326. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||