Acta Metallurgica Sinica (English Letters) ›› 2024, Vol. 37 ›› Issue (11): 1961-1983.DOI: 10.1007/s40195-024-01755-4
Previous Articles Next Articles
Hu-Yue Wang1,2, Hong-Liang Ming2(), Dong-Ceng Hou3, Jian-Qiu Wang1,2,4(
), Wei Ke2, En-Hou Han4
Received:
2024-04-27
Revised:
2024-05-15
Accepted:
2024-05-30
Online:
2024-11-10
Published:
2024-08-07
Contact:
Hong-Liang Ming, hlming12s@imr.ac.cn;
Jian-Qiu Wang, wangjianqiu@imr.ac.cnHu-Yue Wang, Hong-Liang Ming, Dong-Ceng Hou, Jian-Qiu Wang, Wei Ke, En-Hou Han. Using Small Punch Test to Investigate the Mechanical Properties of X42 Exposed to Gaseous Hydrogen: Effect of Pressure, Pre-charge Time, Punch Velocity and Oxygen Content[J]. Acta Metallurgica Sinica (English Letters), 2024, 37(11): 1961-1983.
Add to citation manager EndNote|Ris|BibTeX
C | Mn | S | P | Cu | Ni | Nb + V + Ti | Fe |
---|---|---|---|---|---|---|---|
0.073 | 0.810 | 0.003 | 0.013 | 0.011 | 0.011 | < 0.048 | Bal. |
Table 1 Chemical composition of X42 pipeline steel (wt%)
C | Mn | S | P | Cu | Ni | Nb + V + Ti | Fe |
---|---|---|---|---|---|---|---|
0.073 | 0.810 | 0.003 | 0.013 | 0.011 | 0.011 | < 0.048 | Bal. |
Fig. 1 a Schematic diagram of the sheet-shaped specimen position in the pipe, b geometry of the sheet-shaped specimen. Note: the abbreviations LD, RD, and TD represent the longitudinal direction, radial direction, and transversal direction of the pipe, respectively
Number | Condition |
---|---|
1 | 1 MPa hydrogen/pre-charge time 0 h/punch velocity of 0.004 mm/min |
2 | 2 MPa hydrogen/pre-charge time 0 h/punch velocity of 0.004 mm/min |
3 | 4 MPa hydrogen/pre-charge time 0 h/punch velocity of 0.004 mm/min |
4 | 4 MPa hydrogen/pre-charge time 48 h/punch velocity of 0.004 mm/min |
5 | 4 MPa hydrogen/pre-charge time 120 h/punch velocity of 0.004 mm/min |
6 | 4 MPa hydrogen/pre-charge time 0 h/punch velocity of 0.1 mm/min |
7 | 4 MPa hydrogen/pre-charge time 0 h/punch velocity of 1 mm/min |
8 | 4 MPa mixed gas (hydrogen + 10 vppm oxygen) /pre-charge time 0 h/ punch velocity of 0.004 mm/min |
9 | 4 MPa mixed gas (hydrogen + 50 vppm oxygen) /pre-charge time 0 h/ punch velocity of 0.004 mm/min |
10 | 4 MPa mixed gas (hydrogen + 100 vppm oxygen) /pre-charge time 0 h/ punch velocity of 0.004 mm/min |
11 | 4 MPa nitrogen/pre-charge time 0 h/punch velocity of 0.004 mm/min |
12 | 4 MPa nitrogen/pre-charge time 0 h/punch velocity of 0.1 mm/min |
13 | 4 MPa nitrogen/pre-charge time 0 h/punch velocity of 1 mm/min |
Table 2 Test conditions
Number | Condition |
---|---|
1 | 1 MPa hydrogen/pre-charge time 0 h/punch velocity of 0.004 mm/min |
2 | 2 MPa hydrogen/pre-charge time 0 h/punch velocity of 0.004 mm/min |
3 | 4 MPa hydrogen/pre-charge time 0 h/punch velocity of 0.004 mm/min |
4 | 4 MPa hydrogen/pre-charge time 48 h/punch velocity of 0.004 mm/min |
5 | 4 MPa hydrogen/pre-charge time 120 h/punch velocity of 0.004 mm/min |
6 | 4 MPa hydrogen/pre-charge time 0 h/punch velocity of 0.1 mm/min |
7 | 4 MPa hydrogen/pre-charge time 0 h/punch velocity of 1 mm/min |
8 | 4 MPa mixed gas (hydrogen + 10 vppm oxygen) /pre-charge time 0 h/ punch velocity of 0.004 mm/min |
9 | 4 MPa mixed gas (hydrogen + 50 vppm oxygen) /pre-charge time 0 h/ punch velocity of 0.004 mm/min |
10 | 4 MPa mixed gas (hydrogen + 100 vppm oxygen) /pre-charge time 0 h/ punch velocity of 0.004 mm/min |
11 | 4 MPa nitrogen/pre-charge time 0 h/punch velocity of 0.004 mm/min |
12 | 4 MPa nitrogen/pre-charge time 0 h/punch velocity of 0.1 mm/min |
13 | 4 MPa nitrogen/pre-charge time 0 h/punch velocity of 1 mm/min |
Fig. 2 Metallographic structures of X42 pipeline steel in the a TD-LD, b RD-TD, c RD-LD planes, d image position diagram. Note: the abbreviations LD, RD, and TD represent the longitudinal direction, radial direction, and transversal direction of the pipe, respectively
Fig. 4 Mechanical properties of X42 specimen under different hydrogen pressure: a load-displacement curve, b maximal load, c displacement at failure onset and SP energy
Fig. 5 SEM images of fracture morphologies under 4 MPa nitrogen: a the overall morphology of the specimen from a top-down perspective, b the overall morphology of the specimen from a frontal perspective, c magnified view of the fracture location from a top-down perspective, d microscopic characteristics of the fracture location from a top-down perspective, e magnified view of the fracture location from a frontal perspective, f microscopic characteristics of the fracture location from a frontal perspective, g microscopic characteristics of secondary crack, h morphology of the top area of the fracture part
Fig. 6 SEM images of fracture morphologies under 1 MPa hydrogen: a the overall morphology of the specimen from a top-down perspective, b the overall morphology of the specimen from a frontal perspective, c magnified view of the fracture location from a top-down perspective, d magnified view of the fracture location from a frontal perspective, e microscopic characteristics of the fracture location from a top-down perspective, f microscopic characteristics of the fracture location from a frontal perspective
Fig. 7 SEM images of fracture morphologies under 2 MPa hydrogen: a the overall morphology of the specimen from a top-down perspective, b the overall morphology of the specimen from a frontal perspective, c magnified view of the fracture location from a top-down perspective, d magnified view of the fracture location from a frontal perspective, e microscopic characteristics of the fracture location from a top-down perspective, f microscopic characteristics of the fracture location from a frontal perspective
Fig. 8 SEM images of fracture morphologies under 4 MPa hydrogen: a the overall morphology of the specimen from a top-down perspective, b the overall morphology of the specimen from a frontal perspective, c magnified view of the secondary crack, d magnified view of the fracture location from a frontal perspective, e microscopic characteristics of the fracture location from a top-down perspective, f microscopic characteristics of the fracture location from a frontal perspective, g microscopic characteristics of secondary crack, h morphology of the top area of the fracture part
Fig. 9 SEM images of cracks morphologies in the top area of the fracture part near the gaseous hydrogen side under 4 MPa hydrogen: a-d cracks at different locations
Fig. 10 SEM images of the cross-section under different gas atmosphere and the EBSD results of the crack on the cross-section in gaseous hydrogen: a, b SEM images of cross-section under 4 MPa N2, c, d SEM images of cross-section under 4 MPa H2, e IPF + GB map, f KAM map
Fig. 11 Mechanical properties of X42 specimen under different pre-charge time: a load-displacement curve, b maximal load, c displacement at failure onset and SP energy
Fig. 13 Mechanical properties of X42 specimen under different punch velocity: a load-displacement curve, b maximal load, c displacement at failure onset and SP energy
Fig. 17 Mechanical properties of X42 under different oxygen content: a load-displacement curve, b maximal load, c displacement at failure onset and SP energy
Fig. 18 SEM images of fracture morphologies under 10 vppm oxygen: a the overall morphology of the specimen from a top-down perspective, b the overall morphology of the specimen from a frontal perspective, c the local morphology of the specimen from a frontal perspective, d microscopic characteristics of the fracture location
Fig. 19 SEM images of fracture morphologies under 50 vppm oxygen: a the overall morphology of the specimen from a top-down perspective, b the overall morphology of the specimen from a frontal perspective, c the local morphology of the specimen from a frontal perspective, d microscopic characteristics of the fracture location
Fig. 20 SEM images of fracture morphologies under 100 vppm oxygen: a the overall morphology of the specimen from a top-down perspective, b the overall morphology of the specimen from a frontal perspective, c the local morphology of the specimen from a frontal perspective, d microscopic characteristics of the fracture location
Fig. 21 Schematic diagram of oxygen competitive adsorption on surface of the X42 specimen: a hydrogen adsorption on surface of the X42 specimen; b oxygen competitive adsorption with hydrogen (grey balls—iron atoms; orange balls—oxygen atoms; blue balls—hydrogen atoms)
[1] | X. Xu, Z. Wei, Q. Ji, C. Wang, G. Gao, Resour. Policy 63, 101470 (2019) |
[2] | Y. Li, X. Liu, C. Wang, Q. Hu, J. Wang, H. Ma, Z. Nan, Acta Metall. Sin. 57, 283 (2020) |
[3] | L. Li, J. Lin, N. Wu, S. Xie, C. Meng, Y. Zheng, X. Wang, Y. Zhao, Energy Built Environ. 3, 139 (2022) |
[4] | J.O. Abe, A.P.I. Popoola, E. Ajenifuja, O.M. Popoola, Int. J. Hydrogen Energy 44, 15072 (2019) |
[5] | L. Barreto, A. Makihira, K. Riahi, Int. J. Hydrogen Energy 28, 267 (2003) |
[6] | J. Du, H. Ming, J. Wang, Oil Gas Storage Transp. 42, 1107 (2023) |
[7] | M. Pudukudy, Z. Yaakob, M. Mohammad, B. Narayanan, K. Sopian, Renew. Sust. Energ. Rev. 30, 743 (2014) |
[8] | P.P. Edwards, V.L. Kuznetsov, W.I.F. David, N.P. Brandon, Energy Policy 36, 4356 (2008) |
[9] | K. Zeng, D. Zhang, Progress Energy Combust. Sci. 36, 307 (2010) |
[10] | O. Schmidt, A. Gambhir, I. Staffell, A. Hawkes, J. Nelson, S. Few, Int. J. Hydrogen Energy 42, 30470 (2017) |
[11] | C. Wulf, P. Zapp, Int. J. Hydrogen Energy 43, 11884 (2018) |
[12] | D. Zivar, S. Kumar, J. Foroozesh, Int. J. Hydrogen Energy 46, 23436 (2021) |
[13] | A.B.T. Nelabhotla, D. Pant, C. Dinamarca, Emerging Technol. Biol. Syst. Biogas Upgrading 187 (2021) |
[14] | R. Gerboni, Compend. Hydrogen Energy 2, 283 (2016) |
[15] | C. Yang, J. Ogden, Int. J. Hydrogen Energy 32, 268 (2007) |
[16] | S. Singh, S. Jain, V. Ps, A.K. Tiwari, M.R. Nouni, J.K. Pandey, S. Goel, Renew. Sust. Energ. Rev. 51, 623 (2015) |
[17] | A.D. Korberg, J.Z. Thellufsen, I.R. Skov, M. Chang, S. Paardekooper, H. Lund, B.V. Mathiesen, Int. J. Hydrogen Energy 48, 2877 (2023) |
[18] | C. Yao, J. Chen, H. Ming, J. Wang, J. Chin. Soc. Corros. Prot. 43, 209 (2023) |
[19] | H. Wang, Z. Tong, G. Zhou, C. Zhang, H. Zhou, Y. Wang, W. Zheng, Int. J. Hydrogen Energy 47, 28585 (2022) |
[20] | B. Meng, C. Gu, L. Zhang, C. Zhou, X. Li, Y. Zhao, J. Zheng, X. Chen, Y. Han, Int. J. Hydrogen Energy 42, 7404 (2017) |
[21] | Y. Li, G. Zhang, L. Yang, X. Yu, S. Qian, Corros. Prot. 43, 99 (2022) |
[22] | W.H. Johnson, Nature 11, 393 (1875) |
[23] | T.T. Nguyen, K. Bae, P. Jaeyeong, S.H. Nahm, U.B. Baek, Int. J. Hydrogen Energy 47, 31499 (2022) |
[24] | J. Du, H. Ming, J. Wang, Mater. Lett. 334, 133734 (2023) |
[25] | H. Wan, X. Wu, H. Ming, J. Wang, Acta Metall. Sin. -Engl. Lett. 37, 293 (2023) |
[26] | T. Michler, F. Ebling, H. Oesterlin, C. Fischer, K. Wackermann, Int. J. Hydrogen Energy 47, 34676 (2022) |
[27] | A. Au, B. Gb, Procedia Struct. Integr. 19, 494 (2019) |
[28] | T.T. Nguyen, J.S. Park, S.H. Nahm, U.B. Baek, Theor. Appl. Fract. Mech. 113, 102961 (2021) |
[29] | T.T. Nguyen, J.S. Park, W.S. Kim, S.H. Nahm, U.B. Beak, Mater. Sci. Eng. A 781, 139114 (2020) |
[30] | K. Bae, H. Shin, U. Baek, Int. J. Hydrogen Energy 46, 20107 (2021) |
[31] | S. Faramawy, T. Zaki, A.A.E. Sakr, J. Nat. Gas Sci. Eng. 34, 34 (2016) |
[32] | Y. Cheng, Oil Gas Storage Transp. 42, 1 (2023) |
[33] | Y. Cheng, Y. Sun, Y. Zhang, J. Yangtze Univ. (Nat. Sci. Ed.) 19, 54 (2022) |
[34] | D. Hardie, E.A. Charles, A.H. Lopez, Corros. Sci. 48, 4378 (2006) |
[35] | J. Shang, J. Zheng, Z. Hua, Y. Li, C. Gu, T. Cui, B. Meng, Int. J. Hydrogen Energy 45, 28204 (2020) |
[36] | N.E. Nanninga, Y.S. Levy, E. Drexler, R.T. Condon, A.E. Stevenson, A. Slifka, Corros. Sci. 59, 1 (2012) |
[37] | C. Wang, J. Zhang, C. Liu, Q. Hu, R. Zhang, X. Xu, H. Yang, Y. Ning, Y. Li, Int. J. Hydrogen Energy 48, 243 (2023) |
[38] | Y. Wang, J. Gong, W. Jiang, Int. J. Hydrogen Energy 38, 12503 (2013) |
[39] | C.D. Beachem, Metall. Trans. 3, 441 (1972) |
[40] | D.S. Bae, U.B. Baek, S.H. Nahm, I. Jo, Met. Mater. Int. 28, 466 (2022) |
[41] | C.F. Dong, Z.Y. Liu, X.G. Li, Y.F. Cheng, Int. J. Hydrogen Energy 34, 9879 (2009) |
[42] | Y. Momotani, A. Shibata, D. Terada, N. Tsuji, Int. J. Hydrogen Energy 42, 3371 (2017) |
[43] | A.H.M. Krom, H.J. Maier, R.W.J. Koers, A. Bakker, Mater. Sci. Eng. A 271, 22 (1999) |
[44] | J.K. Young, J.S. Hyun, N.K. Jae, S.L. Chong, Corros. Sci. 142, 213 (2018) |
[45] | A. Staykov, J. Yamabe, B.P. Somerday, Int. J. Quantum Chem. 114, 626 (2014) |
[46] | C. Zhou, H. Zhou, L. Zhang, Materials 17, 2157 (2024) |
[47] | Y. Sun, Y. Ren, Y.F. Cheng, Int. J. Hydrogen Energy 47, 41069 (2022) |
[48] | C. Liu, H. Yang, C. Wang, H. Zhang, R. Ding, L. Ai, X. Fan, R. Zhang, X. Xu, Y. Ning, Y.F. Cheng, Int. J. Hydrogen Energy 48, 27766 (2023) |
[49] | R. Komoda, M. Kubota, A. Staykov, P. Ginet, F. Barbier, J. Furtado, L. Prost, A. Nagao, Metall. Mater. Trans. A 53, 74 (2022) |
[50] | C. Wang, X. Xu, Y. Hua, R. Zhang, C. Liu, X. Luo, S. Gu, Y. Li, Y.F. Cheng, Corros. Sci. 227, 111789 (2024) |
[51] | W. Zhao, W. Wang, S. Li, X. Li, C. Sun, J. Sun, W. Jiang, Int. J. Hydrogen Energy 50, 292 (2024) |
[52] | X. Xu, M. Zhou, C. Wang, J. Zhang, C. Liu, Y. Song, Y. Wang, S. Gu, Y. Li, Corros. Sci. 229, 111880 (2024) |
[1] | Hongwei Yan, Yong’an Zhang, Wei Xiao, Boyu Xue, Rui Liu, Xiwu Li, Zhihui Li, Baiqing Xiong. Experimental and DFT Investigations of AlNbTiVZr High Entropy Alloys with Excellent Mechanical Properties [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(9): 1480-1490. |
[2] | Zirui Chen, Liyuan Wang, Jiayu Zhao, Guanhua Cui, Zhuo Gao, Zhiyuan Fan, Xiaohui Shi, Junwei Qiao. Microstructure and Mechanical Properties of the Ti62Nb12Mo12Ta12W2 Refractory High Entropy Alloy Prepared through Spark Plasma Sintering [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(8): 1387-1398. |
[3] | Shasha Qu, Yingju Li, Bingyu Lu, Cuiping Wang, Yuansheng Yang. Effects of Boron Addition on the Microstructure and Mechanical Properties of γ′-Strengthened Directionally Solidified CoNi-Base Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(8): 1438-1452. |
[4] | Guan-Cheng Gu, Zhao-Jing Han, Ze-Yu Chen, Zhao-Xuan Li, Sheng-Bao Xia, Zheng-Ning Li, Hua Jin, Wei-Wei Xu, Xing-Jun Liu. Theoretical Exploration of Alloying Effects on Stabilities and Mechanical Properties of γʹ Phase in Novel Co-Al-Nb-Base Superalloys [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(7): 1238-1248. |
[5] | Qi-Yu Liao, Da-Zhi Zhao, Qi-Chi Le, Wen-Xin Hu, Yan-Chao Jiang, Wei-Yang Zhou, Liang Ren, Dan-Dan Li, Zhao-Yang Yin. Effect of Artificial Cooling Extrusion on Microstructure and Mechanical Properties of Mg-Zn-Y Alloys [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(7): 1115-1127. |
[6] | Ziyue Xu, Huan Liu, Luyao Li, Chao Sun, Xi Tan, Baishan Chen, Qiangsheng Dong, Yuna Wu, Jinghua Jiang, Jiang Ma. Effect of Room Temperature Ultrasonic Vibration Compression on the Microstructure Evolution and Mechanical Properties of AZ91 Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(7): 1135-1146. |
[7] | Xiaofeng Ding, Zehao Wu, Tong Li, Jianxun Chen, Yuanhua Shuang, Baosheng Liu. Effect of Three-High Rotary Piercing Process on Microstructure, Texture and Mechanical Properties of Magnesium Alloy Seamless Tube [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(6): 953-968. |
[8] | Huanzhi Zhang, Tianxin Li, Qianqian Wang, Zhenbo Zhu, Hefei Huang, Yiping Lu. Effects of Nitrogen Doping on Microstructures and Irradiation Resistance of Ti-Zr-Nb-V-Mo Refractory High-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(6): 1007-1018. |
[9] | Iman Ansarian, Reza Taghiabadi, Saeid Amini, Mohammad Hossein Mosallanejad, Luca Iuliano, Abdollah Saboori. Improvement of Surface Mechanical and Tribological Characteristics of L-PBF Processed Commercially Pure Titanium through Ultrasonic Impact Treatment [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(6): 1034-1046. |
[10] | Peng Chen, Wenhao Chen, Jiaxin Chen, Zhiyu Chen, Yang Tang, Ge Liu, Bensheng Huang, Zhiqing Zhang. Microstructure Evolution and Mechanical Properties of Friction Stir Welded Al-Cu-Li Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(5): 855-871. |
[11] | Xiang Kong, Yu Wang, Hong Xu, Haotian Fan, Yuewu Zheng, Beibei Xie. NbB2 Modified Al-Cu Alloys Fabricated by Freeze-Ablation Casting under High Cooling Rate Solidification [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(5): 921-938. |
[12] | Zhenghong Liu, Zhigang Wu, Ying Han, Xiaolei Song, Guoqing Zu, Weiwei Zhu, Xu Ran. Combination of High Yield Strength and Improved Ductility of 21Cr Lean Duplex Stainless Steel by Tailoring Cold Deformation and Low-Temperature Short-Term Aging [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(4): 695-702. |
[13] | Chuan Rong, Jieren Yang, Xiaoliang Zhao, Ke Huang, Ying Liu, Xiaohong Wang, Dongdong Zhu, Ruirun Chen. Microstructure Recrystallization and Mechanical Properties of a Cold-Rolled TiNbZrTaHf Refractory High-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(4): 633-647. |
[14] | Zhiyuan Liu, Li Jin, Jian Zeng, Fulin Wang, Fenghua Wang, Shuai Dong, Jie Dong. A Review on Particle Reinforced Mg Matrix Composites Fabricated by Powder Metallurgy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(3): 391-400. |
[15] | Jing-Peng Xiong, Yi-Qi Zeng, Jin-Long Liu, Wei-Cheng Wang, Lan Luo, Yong Liu. Interface Design Strategy for GNS/AZ91 Composites with Semi-Coherent Structure [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(3): 467-483. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||